

Inside NA61 detector at CERN

The Mu2e Experiment

MINOS hall at Fermilab

U of M Quarknet Workshop Ben Messerly 2021-08-13

A Business Proposal

Standard Model of Elementary Particles

Previous Research: neutrinos

Measured a neutrino cross section (interaction probability)

- \rightarrow inform neutrino oscillation research
- \rightarrow probe the (very complicated) nucleus

MINERvA Experiment

Cocktail Party Explanation:

We're looking for ways that the standard model is incomplete/wrong!

Many standard model extensions predict the *changing* of one particle into its sister particles (muons \rightarrow electrons).

There's a lot of standard model precedence for this.

Let's look for it!

How?

Make a bunch of muons and wait for them to change into an electron!

Standard Model of Elementary Particles

Standard Model of Elementary Particles

Standard Model of Elementary Particles

CLFV in the Standard Model

CLFV Beyond the Standard Model

We've Looked

Mu2e Hall

Tracker construction

York Straw ends Vacuum feedthroughs Vacuum test straws U. Mn Straw QC Cut and terminate straws Rice, U. H. assemble panels Panel QC Duke Work with PPG Locate wires (x-ray) Fermilab Assemble planes Assemble tracker

Mu2e Experimental Design

- Create a beam of muons
- Stop the muons in aluminum
- Let aluminum to facilitate the muon \rightarrow electron conversion
- Observe electrons

What happens in Aluminum

Background: free muon decay

What Mu2e will see

What Mu2e will see

Mu2e's Charge

• Observe electrons with 105 MeV/c momentum

- Current Standard model of particle physics predicts we won't see any
- But this is where our the current model might be wrong!
- $\circ \rightarrow \text{nobel prize}$
- Or don't
 - wipe out whole categories of possible new theories

Mu2e's Strategy

- 1. Send lots of muons through our detector
- 2. Take pictures of their electrons
- 3. Look among the pictures for electrons of 105 MeV/c momentum
- 4. Find such electrons. Or don't.
- 5. Profit

Mu2e Tracker

The Mu2e Tracker

Which is being built, as we speak, upstairs in PAN 450

Take "digital pictures" of particles

Ben Messerly. Mu2e. U of M Quarknet Workshop. 2021-08-13.

Our pictures will be pixelated ^

iPhone: 12 MEGApixel = 12 million pixels Mu2e: 20 KILOpixel = 21,000 pixels (straws)

• But mu2e is 3D!

Annular (Ringlike) Tracker Geometry

Particles won't typically collide and stop in our detector

Particles leave energy behind in each straw. Convert that energy into a digital "hit"

Physical description:

- 15 µm thick Mylar straws
- 5 mm diameter
- Length from 45 to 120 cm
- 500 Å of aluminum on both inside and outside
- An additional 200 Å of gold on the inside

Ben Messerly. Mu2e. U of M Quarknet Workshop. 2021-08-13.

Magnetic Field

Solenoid = coil of wire, carrying current, creating magnetic B field

Electrons moving in a uniform magnetic field

How fast is a 105 MeV electron?

 E_e = rest mass of electron + kinetic energy of electron

105 MeV = m_ec² +
$$\gamma$$
m_ec²
$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$
m_e = 0.511 MeV/c²

Solve for velocity, v

Input:

$$\sqrt{1 - \frac{0.511^2}{(105 - 0.511)^2}}$$
Result:
0.99998804160...

105 MeV Electron is travelling 99.9988% of the speed of light

Radius of helix (Relativistic!)

1.70434 mm (millimeters)

I need a relativistic gamma δ factor in the numerator. A 105 MeV electron has $\delta = 207$.

1.7mm * 207 = 350 mm

And to get from 350-700, the magnetic field is in fact NOT uniform.

Still: use helix radius to determine, and the track more generally, to measure electron velocity.

В

-13.

Signal electron + all hits over 500-1695 ns window

Straw Processing

Panel Production

Station 1

Manifold Construction

Panel Production Continued

Alcohol Leak Check and Flooding

Resistance Check & Leak Test

Ready to be shipped

Ask Me About

- Coding
- College research opportunities
- Problem solving
- Group work
- Exams/Courses vs research
- Data Science
- My job plans
- College Prep

- Neutrinos
- Particle beams
- Data flow in particle physics
- High school physics in the lab
- My role as IT/software engineer/database admin for mu2e

Mu2e Tracker Panel Production Schedule at UMN

Ben Messerly. Mu2e. U of M Quarknet Workshop. 2021-08-13.

Bubble chamber is another type of detector

Not pixelated! analog! Real camera film took this picture!

Time Projection Chamber is another type of detector

Transport Solenoid

- 'S' Shape blocks line-of-sight particles
- Bend creates a charge and momentum dependent vertical shift
- Asymmetric collimator rejects positive and high momentum particles.
 - Collimator can be rotated for opposite selection to test background.

Detector Solenoid

Production Solenoid

Where along the straw did the electron actually pass through?

Where *in* the straw did the electron pass

Drift radius = "distance of closest approach"

"Staggered" / overlapping top and bottom layer design: Track always* passes through at least two straws!

Gives us a finer position "resolution", better efficiency, left vs right side of the wire

Where *in* the straw did the electron pass

Drift radius = "distance of closest approach"

"Staggered" / overlapping top and bottom layer design: Track always* passes through at least two straws!

Gives us a finer position "resolution", better efficiency, left vs right side of the wire

Why do we rotate the panels relative to each other

Mu2e signal hits selected by annular geometry

Mu2e beam pulse timeline

Worker Portal pro 1 Supplies List Panel pro 1							
Process 1 - Inner Rings				Steps:	Elapsed Time		
Setup						Finish	Day Select
Panel: MN*** Base plate: BP***				Use the barcode scanner to enter	In Case of Failure		
MTD- MTD-FFF	010- 010- 010-00			the IDs of the Panel, Baseplate, 1 BIR PIRs MIR and ALEs to be	Select failed item T Enter comments for		
			used. Make sure the baseplate	failure.			
PIR LA: PIR			Start	nas been cleaned.	Select failure mode		
PIR LB: PIR**** PIR RB: PIR****		Start	2 Shape the BIR to the basenlate	Select position on panel			
PIR LC: PIR****	PIR RC: PIR**** PIR RC: PIR****			2. Shape the bix to the baseplate.			
ALF 1: ALF*** ALF***			Dry fit PIRs and shim ALFs to		Submit Failure		
PAAS A PAAS A-**	PAAS A PAAS A-** PAAS C PAAS C-**			an optimal epoxy joint.			
					Previous Comments		
BIR Installation Straw Loading Pallets				4. Prepare the PIRs and MIRs for epoxy.			
Left gap (mils): Select Min BP/BIR gap (mils): Select V							
			raws	5. Epoxy the PIRs to the BIR using			
				ule ALF.			
				Clean up excess epoxy and let			
LPAL**** Lower La			raws	epoxy cure overnight.			
Right gap (mils): Select V Max BP/BIR gap (mils): Select V				Charlette smallter of the second			
	Validate Straws		7. sample. Remove any excess				
			epoxy.				
PIR/MIR Installation Comments				8 Check the comb shims			
Epoxy Batch: EP****				- o. Check the comb shifts.			
Epoxy Mixed S			Save	Put in and power the electrostatic			
				tray and load straws into the PIR. 9. Make sure the loading pallets			
Masking Removed				barcode are scanned as they are			
Informative Images/Gifs							
Launch Panel Barcode P	Placement PAAS A/C, ALF, Conducton	A/C, ALF, Conducton Ring Epoxy Mixing BIR Groove		10. Heat overnight.			
Heater GUI BIR Hole	Positions Alf Placement						

NuMI Flux Simulation – Focusing System

Pion Production Cross Section

1.0

 Q^2 (MeV²)

+ Data

- Simulation

MC stat-only errors

 χ^2 /ndf = 7.28/7 = 1.04

1.5

2.0

- 1e21 POT, 20k+ signal events
- Minimally model dependent
- <E_> ~ 7 GeV

0.5

- Generally good agreement with GENIE, consistent with $\langle E_{v} \rangle \sim 3.5 \text{ GeV results}$
- Publication in preparation

B. Messerly

Neutrino Flux and Cross Section Challenges

- Neutrino beams not monoenergetic
- Standard candle interactions limited
- In situ monitoring overlaps with physics measurements
- \rightarrow Sophisticated simulations needed

- Must reconstruct neutrino energy from event
- Several overlapping v interaction channels
- Detectors of complex nuclei
 - E, is obscured by nuclear physics

UMN Furmanski Interview, 2019-12-20,

Flux Φ

Quasielastic (QE

W

Flux Simulation: Focusing System Geometry

- Sophisticated model of each beamline component
- Resulting flux simulation very sensitive to small deviations in beamline parameters

Focusing System

Conclusions

- Energy dependence is not axially symmetric
- Useful distinction between axially symmetric and asymmetric parameters.
- New metrics useful lens through which to approach beam model design.

Pion Production Modeling and Challenges

UMN Furmanski Interview. 2019-12-20.

Basic physics of the lab

Tension Measurement (What is it?)

The Problem : We need to determine what tension of parts of the detector.

- Straws
 - Thin-walled
 - Hallow
 - Conductive

• Wires

- Very small
- String-like
- Not visible
- Conductive

f is frequency λ is wavelength ρ is linear density

Solution :

There is a resonant frequency at which strings vibrate.
Measure frequency → Tension
For a string this equation is

$$T=f^2\lambda^2\rho$$

What The Pluck?

- Attach Power source to pins
- Apply a magnetic field
- Send a large pulse of electrons
 - 5 ms
 - 10 V amplitude
- 10 msec delay
- Non-resonate waves die
- Resonate waves propagate

 \otimes

 \otimes

Inducing Current

Once "plucked" by the electric pulse the wire will then oscillate.

The conductive wire is full of free flowing electrons.

As it oscillates in the magnetic field, an electrical current is induced back and forth. Sampling the current quickly (8900 Hz), we get a data source which looks clear.

Transforms

Fourier Transform

Fourier Theory says any signal can be mimicked by an infinite number of sin and cos waves

Fast Fourier Transform is an algorithm for quickly computing the strength of these waves.

This is used all over the place in modern technology :

- Data/Image compression
- Noise filtering
- MOLOT Cook

Background Noise and other things

- frequency near 0
 Hz ⇒ Catching
 Initial pulse
- Frequency near 60 Hz ⇒ US electrical mains
- Always another frequency ? Check room air flow

Straws vs Wire Vibrations

m = string mass

= string tension

L = string length

Straws :

Tensions ~400-600 g frequency ~10Hz - 60 Hz

$$\nu = \frac{K}{2L}\sqrt{m} + \frac{c}{L^2}$$

Wires : Tensions ~80 g frequency ~40Hz - 120 Hz

$$\nu = \frac{K}{2L}\sqrt{m}$$

Arduinos

- Miniature computers (microcontrollers) which run most of our electronics in the lab.
- Can measure voltage quickly and accurately
 - ADC input (0 to +3.3V)
 - ADC resolution is about 0.81 mV
 - ADC sampling rate 1 MHz

Leak Tests (Overview)

Procedure:

- Fill a straw with pure CO_2 at 15 psi over ambient pressure
- Pressurized straw is put in a chamber filled with N₂
- CO₂ detectors measure CO₂ in chamber
- Arduino reads CO₂ detectors, plots leak rate of straws

Straws Leaking

Collapse d straw

75

Measuring the CO_2 Level in the Chamber

Wavelength (Micrometers)

reverse X 👻 µm 👻 Absorbance 👻

Fitting the leak rate

Uncertainty in the leak rate is a function of :

- The number of data points
- The uncertainty of each datapoint
- Time elapsed

Takes ~40 minutes and 100 datapoints to reach 10⁻⁶ sccm uncertainty

Epoxy, on both your houses

Epoxy is used everyday in many industrial processes. It is also being used for art and home decorating.

Why is Epoxy good:

- Rigid but tough bond
 - often used as alternatives to welding or rivets
- Excellent adhesion to metals
- · Chemical and environmental resistance
 - Many are rad-hard with minimal outgassing
- Easy application
- Can fill gaps and create seals

What is Epoxy

EPOXY

What we call epoxy is cured epoxy resin.

Epoxy Adhesive

Two parts : the resin and the curing agent. When the resin and the curing agent react together, the hardening process ensues.

Resin is usually made of a complex hydrocarbon like bisphenol $(C_{15}H_{16}O_2)$. This is a combination of acetone and phenol.

- When discovered this originally came from Coal Tar.
- Now we get this from petroleum.

The Cure

As it cures, mixed epoxy changes from a liquid state, to a gel, to a solid

Electrical Heating

Power Formula : P=I²R

As electrons travel in a wire, they run into other particles. Each kentic interaction deposits energy into the material. Material heats up.

- Thin lines of metal that go underneath each of the PAASs.
- Well insolated
- Heating box has an adjustable resistance which controls the current.