Relativistic kinematics: Lorentz Transformations

Speed v of S^{\prime} w.r.t. the S along z-axes

$$
\beta=v / c, \gamma=1 / \sqrt{1-\beta^{2}}
$$

Lorentz boost. $\gamma-$ Lorentz factor

- Space and time coordinates have different values when measured in different inertial frames moving wrt one another. Relation is described by Lorentz Transformation (LT)

$$
\begin{array}{llc}
x^{\prime}=x & x=x^{\prime} & \text { At small speeds, } \beta=v / c \ll 1, \gamma=1, \\
y^{\prime}=y & y=y^{\prime} & \text { reduces to Galilean transformation } \\
z^{\prime}=\gamma(z-\beta c t) & z=\gamma\left(z^{\prime}+\beta c t\right) & z^{\prime}=\gamma(z-\beta c t)=z-v t \\
c t^{\prime}=\gamma(c t-\beta z) & c t=\gamma\left(c t^{\prime}+\beta z\right) & t^{\prime}=t-v / c^{2} z=t
\end{array}
$$

- Lengths perpendicular to the direction of motion are unaffected by LTs
- Length of an object along its direction of motion is related to its length at rest (S^{\prime} frame) as $\Delta z=\Delta z^{\prime} / \gamma \leftarrow$ length contraction
- Time interval of a moving clock $\leftrightarrow \rightarrow$ elapsed time at rest: $\Delta t=\gamma \Delta t^{\prime} \leqslant$ time dilation
- Definition: "proper time", τ, the lifetime of a particle in its rest frame \rightarrow Particle's lifetime in the frame in which it is moving is: $t=\gamma \tau$ and $t \geq \tau$

Relativistic kinematics: four-vectors, invariants, $E, \mathbf{p}, \mathbf{v}$

- Most general LT has simplest form in terms of 4-vectors: $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\left(a_{0}, \mathbf{a}\right)$
- Space-time and momentum 4-vectors: $x=(c t, \mathbf{x})=(c t, \mathbf{r}), P=(E / c, \mathbf{p})$
- Scalar product of two 4-vectors defined as $a b \equiv a_{0} b_{0}-\mathbf{a b}$ is invariant under LT. In particular, LT preserves the quantities

LT implies $a^{2}=a_{0}^{2}-\mathbf{a}^{2}, x^{2}=(c t)^{2}-x^{2}-y^{2}-z^{2}, P^{2}=(E / c)^{2}-p_{x}^{2}-p_{y}^{2}-p_{z}^{2}$

$$
a_{2}^{\prime}=y
$$

$$
a_{3}^{\prime}=\gamma(z-\beta c t)
$$

$$
a_{0}^{\prime}=\gamma(c t-\beta z)
$$

- Basic 4-vector in particle kinematics is the four-momentum, $P \equiv m u$, with $u=\gamma(c, \mathbf{v})$, where m is the rest mass, u is the 4 -velocity and \mathbf{v} is usual 3 -velocity, and $v \equiv|\mathbf{v}|$
- Given two definitions for momentum 4-vectors: $P=m u=(m \gamma c, m \gamma \mathbf{v})=(E / c, \mathbf{p})$
$\Rightarrow E=\gamma m c^{2}, \mathbf{p}=\gamma m \mathbf{v}, \mathbf{v}=\frac{c^{2}}{E} \mathbf{p}$ cf. Newtonian mechanics: $E=\frac{1}{2} m v^{2}, \mathbf{p}=m \mathbf{v}, E=\frac{p^{2}}{2 m}$
- In terms of the total energy E and the 3-momentum $\mathbf{p}: P=(E / c, \mathbf{p})$

$$
\Rightarrow P^{2}=(E / c)^{2}-\mathbf{p}^{2}\left\{u^{2}=c^{2}, P^{2}=m^{2} c^{2}\right\} \Rightarrow m^{2} c^{2}=E^{2} / c^{2}-\mathbf{p}^{2} \Rightarrow E^{2}=m^{2} c^{4}+\mathbf{p}^{2} c^{2}
$$

- Special case of $m=0: E=p c \& E=\gamma m c^{2} \Rightarrow p c=\gamma m c^{2} \Rightarrow p=\gamma m c=\gamma m v=>v=c$ => Massless particles must travel at the speed of light!
$*$ NB: v here is not the speed v of S^{\prime} w.r.t. the $S!$ Pay attention to the context

Relativistic kinematics: (Kinetic) energy, momentum

Speed v of S^{\prime} w.r.t. the S along z-axes

$$
\beta=v / c, \gamma=1 / \sqrt{1-\beta^{2}}
$$

Lorentz boost. γ - Lorentz factor

- Similar to space-time, the 4-momenta in two frames are related through LT

$$
\begin{array}{ll}
p_{x}^{\prime}=p_{x} & p_{x}=p_{x}^{\prime} \\
p_{y}^{\prime}=p_{y} & p_{y}=p_{y}^{\prime} \\
p_{z}^{\prime}=\gamma\left(p_{z}-\beta E / c\right) & p_{z}=\gamma\left(p_{z}^{\prime}+\beta E / c\right) \\
E^{\prime} / c=\gamma\left(E / c-\beta p_{z}\right) & E / c=\gamma\left(E^{\prime} / c+\beta p_{z}\right)
\end{array}
$$

- Useful formulae $E=\gamma m c^{2}, \mathbf{p}=\gamma m \mathbf{v}, E^{2}=m^{2} c^{4}+\mathbf{p}^{2} c^{2}, K=E-m c^{2}=(\gamma-1) m c^{2}$
- In natural units $E=\gamma m, E^{2}=m^{2}+\mathbf{p}^{2}, K=(\gamma-1) m, \gamma=E / m, \mathbf{p}^{2}=K^{2}+2 K m$
$*$ NB: v here is not the speed v of S^{\prime} w.r.t. the $S!$ Pay attention to the context

