THE SHOES PROJECT AND THE ACCELERATING UNIVERSE

LUCAS MACRI

GEORGE P. & CYNTHIA WOODS MITCHELL INSTITUTE FOR FUNDAMENTAL PHYSICS & ASTRONOMY

DEPARTMENT OF PHYSICS & ASTRONOMY

TEXAS A&M UNIVERSITY

OUTLINE

Introduction

• How to measure the expansion rate to $\sim 1\%$

- Cosmological probes of the expansion
- New Physics in the dark sector?
- Next steps

UNITS...

- I've done my best to remove astronomical units from this version of my talk; however, a few might appear...
- 1 L_{\odot} ~ 10²⁶ W, "luminosity"; "flux" \rightarrow W m⁻²
- $1 \text{ R}_{\odot} \sim 10^9 \text{ m}$
- $1 M_{\odot} \sim 10^{30} \text{ kg}$
- $1 \text{ Mpc} \sim 10^{22} \text{ m} \sim 3.10^{6} \text{ ly}$
- "Magnitude" = $-2.5 \log_{10} (\text{flux}) + C$
 - In mag: Vega $\equiv 0$; Sun ≈ -25 ; stars in this talk $\approx +25$
 - In flux: Vega \equiv 1; Sun $\approx 10^{10}$; stars in this talk $\approx 10^{-10}$

ONE HUNDRED YEARS AGO...

- What was the "consensus view" of the Universe around 1921?
- Age of the Universe (Earth):
 - \gtrsim 1 Gyr from radioactive dating (e.g. Boltwood 1907)
- Size of the Universe
 - The Milky Way is the entire Universe (D=4-20 \cdot 10²⁰ m)
 - Composed of stars and "nebulae" (elliptical, spiral, etc.)
 - Rotating, but no expansion or contraction
 - Thus, Einstein's Λ in 1917

The great discoveries of 1912

- Vesto Slipher obtains the first spectrum of a "spiral nebula"
 Andromeda: v=-297±10 km/s (modern value: -300±4 km/s)
- He observes many more nebulae over next few years
- Most velocities are positive (receding) and much larger than the velocities of stars
- What is the reason for these "red shifts"?

1,200 km s⁻¹

H + K

THE GREAT DISCOVERIES OF 1912

- Henrietta Swan Leavitt discovers a relation between the periods and luminosities of "Cepheid variables"
 - Nature of variability was unknown at the time; not binaries...
- Cepheids become a "standard candle": $D^2 = L / 4\pi f$

STANDARD CANDLES

- If we know that members of some class of stars have the same luminosity, then we can use their *relative* fluxes to estimate *relative* distances
- We need to know the *absolute* distance to at least one of these stars, which we can measure via parallax

• In 1838, Friedrich Bessel first measured the distance to a star using a method known as "parallax."

• Question for the group: how would you identify a star that may be reasonably closer to you than others?

PROPER MOTION

If stars move at similar speeds through space, then those closer to us will appear to move faster across the sky (*proper motion*)
1 arc-second ["] = 1/3600 deg ~ 5×10⁻⁶ rad

• If we can measure:

- The distance between the Sun and the Earth (1 AU)
- The angle subtended by the apparent motion of a star
- Then use trigonometry to solve for its distance

- Why in 1838? Parallax angle is *very* small (~0.04% angular diameter of Moon) and required mechanical devices
- That's $\sim 80 \times$ smaller than the resolution of the human eye and about the size the of the "blur" imposed by the Earth's atmosphere on telescopic images

• The parallax angle grows larger if we measure it using a wider baseline... how about one image from Earth and the other one from New Horizons (45 AU away)?

 Images obtained June 2020: Parallaxes of Proxima Centauri and Wolf 359 are obvious ⁽²⁾ but still ~2× smaller than what the unaided human eye can see ⁽²⁾

 Images obtained June 2020: Parallaxes of Proxima Centauri and Wolf 359 are obvious ⁽²⁾ but still ~2× smaller than what the unaided human eye can see ⁽²⁾

Proxima Centauri

Wolf 359

Leavitt's Cepheids

Small Magellanic Cloud

Large Magellanic Cloud

© R. Smith/CTIO/AURA/NSF

MILEYNAN

STANDARD CANDLES (AND RULERS!)

- Note also that (in this crude analogy) the <u>angular size</u> of the lighthouses can also be used as a distance indicator (assuming they were all built to the same specs)
- We refer to such techniques as "standard rulers"

"LIGHT CURVE" OF A CEPHEID

Brief (1% of lifetime, 10^{3-5} yrs) phase of stellar evolution for stars with masses ~4–15 M_{\odot}; regular pulsations with P~2–100d

LOG FLUX + C

"LIGHT CURVE" OF A CEPHEID

Brief (1% of lifetime, 10^{3-5} yrs) phase of stellar evolution for stars with masses ~4–15 M_{\odot}; regular pulsations with P~2–100d

THEORETICAL P-L RELATION

ALIBERT+ (1999)

"LEAVITT LAW" IN THE LMC

1925: HUBBLE & CEPHEIDS

- Edwin Hubble discovers Cepheids within "spiral nebulae"
 - These nebulae are $\sim 10 \times$ farther than the Magellanic Clouds
- The Universe becomes much larger... and full of "galaxies"!

1924-1929: AN EXPANDING UNIVERSE

• Lundmark (1924), Lemaître (1927) and Hubble (1929) find relations between the distances to "nebulae" and Slipher's velocities: evidence for an expanding Universe

1924-1929: An Expanding Universe

• We now refer to this relation as the "Hubble-Lemaître Law":

$$V = H_0 D$$

• Note that the "Hubble constant", H₀, has units of s⁻¹, so the age of the Universe is

$$t_0 \approx 1/H_0$$

• Hubble (1929): $t_0 \sim 2 \text{ Gyr ``} \pm 10\%$ '' [not quite...]

H₀ & Cosmology

- The expansion of a homogeneous and isotropic Universe can be described by a Friedmann-Lemaître-Robertson-Walker cosmology, using parameters that describe:
 - Expansion rate, or Hubble constant:
 - a: scale factor (today = 1; Big Bang = 0)

$$H = \frac{\dot{a}}{a}$$

- Global geometry (open, flat or closed)
- Composition of the Universe
 - Density of atomic & dark matter, photons, neutrinos, etc.
- These parameters are related via the Friedmann equation, a solution of Einstein's General Relativity field equations

H_0 & Cosmology

These parameters are related via the Friedmann equation, a solution of Einstein's General Relativity field equations:

- Ω_m : matter (baryonic+dark)
- Ω_k : curvature

- Ω_r : relativistic species
- Ω_{Φ} : dark energy

H_0 & Cosmology

• These parameters are related via the Friedmann equation, a solution of Einstein's general relativity field equations:

- $\Omega_{\rm m}$: matter (baryonic+dark)
- Ω_k : curvature
- z = v/c

- Ω_r: relativistic species
- Ω_{Φ} : dark energy (Ω_{Λ})
- w: equation of state parameter of dark energy, $P = w \rho c^2$
- if w = -1, then dark energy becomes the "cosmological constant" Λ

OUTLINE

✓ Introduction

> How to measure the Hubble constant to $\sim 1\%$

- Cosmological probes of the expansion
- New Physics in the dark sector?
- Next steps

STEPS TO THE HUBBLE CONSTANT

$$H_0 = V/D$$

CEPHEID LUMINOSITIES

- Absolute calibration: several independent geometrical methods
- Trigonometric parallaxes to 75 Cepheids within the Milky Way
 - Sample will further increase and improve thanks to the ongoing *Gaia* mission
- Distance to the Large Magellanic Cloud (>1000 Cepheids)
 - Based on tight relation between flux density per unit angular area and surface temperature of stars
- Distance to the galaxy Messier 106 (>600 Cepheids)
 - Based on near-Keplerian motions of water maser clouds orbiting supermassive black hole at galaxy center

CEPHEID LUMINOSITIES

COMPLICATIONS...

- As the ocean "expands", all islands are moving randomly at small speeds
- These "peculiar motions" become irrelevant at larger distances → measure the expansion rate using the farthest islands
- Lighthouses become too dim to be useful, but (thankfully!) nuclear explosions go off in some of the islands...

WHITE DWARF SUPERNOVAE

- Earth-sized degenerate C/O stellar core reaches $\sim 1.4 M_{\odot}$
 - Nature of "donor" unknown (merger of 2 white dwarfs, companion star)
 - ° T_{max} > 5×10⁹ K → nuclear statistical equilibrium → ~0.4 M_☉ ⁵⁶Ni
- Excellent secondary distance indicator (single SN → ±7%)
 Based on empirically-determined corrections to light curve

NASA/CXC/Texas Tech/T. Maccarone; NASA/CXC/M. Weiss

NASA/GSFC/T. Strohmayer; NASA/CXC/D. Berry

WHITE DWARF SUPERNOVAE

- Earth-sized degenerate C/O stellar core reaches $\sim 1.4 M_{\odot}$
 - Nature of "donor" unknown (merger of 2 white dwarfs, companion star)
 - ° T_{max} > 5×10⁹ K → nuclear statistical equilibrium → ~0.4 M_☉ ⁵⁶Ni
- Excellent secondary distance indicator (single SN → ±7%)
 Based on empirically-determined corrections to light curve

ESA/C. Carreau

NASA/GSFC/T. Strohmayer; NASA/CXC/D. Berry

WHITE DWARF SUPERNOVAE

- Earth-sized degenerate C/O stellar core reaches $\sim 1.4 M_{\odot}$
 - Nature of "donor" unknown (merger of 2 white dwarfs, companion star)
 - T_{max} > 5×10⁹ K → nuclear statistical equilibrium → ~0.4 M_☉ ⁵⁶Ni
- Excellent secondary distance indicator (single SN → ±7%)
 Based on empirically-determined corrections to light curve

WHITE DWARF SUPERNOVAE

- Earth-sized degenerate C/O stellar core reaches $\sim 1.4 M_{\odot}$
 - Nature of "donor" unknown (merger of 2 white dwarfs, companion star)
 - ° T_{max} > 5×10⁹ K → nuclear statistical equilibrium → ~0.4 M_☉ ⁵⁶Ni
- Excellent secondary distance indicator (single SN → ±7%)
 Based on empirically-determined corrections to light curve

THE SH₀ES PROJECT

- Started in 2005 by Riess, Macri & collaborators to reduce uncertainty in H_0 (10% at the time) by using:
 - Only geometric distance indicators
 - Milky Way (π's): HST+*Hipparcos* (Benedict+2007; v. Leeuwen+2007)
 - NGC 4258 (masers): D=7.54 Mpc ±3% (Humphreys+ 2008)
 - Only modern & ideal SNe Ia (N = $2 \rightarrow 6$)
 - Photoelectric or CCD photometry; low reddening; observed pre-max
 - Single telescope (HST) & cameras, focusing on near-infrared (less affected by interstellar dust & variations in chem abundance)
 - Optical: second & third-gen cameras
 - Near-infrared: first-gen camera
- Results: $\sigma(H_0) = 4.8\%$ (Riess, Macri+ 2009)

THE SH₀ES PROJECT

- Started in 2005 by Riess, Macri & collaborators to reduce uncertainty in H_0 (10% at the time) by using:
 - Only geometric distance indicators
 - Milky Way (π 's): HST/FGS+*Hipparcos* \rightarrow HST/WFC3 (Riess+2014)
 - LMC (eclipsing binaries): D=50 kpc $\pm 2.2\%$ (Pietrzynski+ 2013)
 - NGC 4258 (masers): D=7.54 Mpc ±2.6% (Humphreys+ 2013)
 - Only modern & ideal SNe Ia (N = $2 \rightarrow 6, 8, 19$)
 - Photoelectric or CCD photometry; low reddening; observed pre-max
 - Single telescope (HST) & cameras, focusing on near-infrared (less affected by interstellar dust & variations in chem abundance)
 - Optical: \rightarrow third- & fourth-gen cameras
 - Near-infrared: \rightarrow second-gen camera
- Results: $\sigma(H_0)$ =4.8, 3.3, 2.4% (Riess, Macri+ 2009, 11, 16)

SH0ES ANCHORS & SN HOST GALAXIES

RIESS, MACRI, HOFFMANN+ (2016)

SH₀ES HST/WFC3 PHOTOMETRY

"LEAVITT LAWS" IN SH₀ES GALAXIES

2300 Cepheids with homogeneous near-infrared photometry enable a 2.4% determination of H_0

LOG PERIOD [DAYS]

Error budget for H_0

PERFORM SIMULTANEOUS FIT TO RETAIN INTERDEPENDENCE OF DATA AND PARAMETERS

D	•	¬ <i>Г</i>	•
Reores	s_{10n}	Ma	triv
negres	51011	IVIA	UIIA

								0				
	$\binom{1}{1}$		0	0	1	0	0	$\log P^h_{18,1}/0$	0	$\rm [O/H]_{18,1}$	0	$\log P_{18,1}^l/o$ \
		••	••	••	••	••	••		••		••	
	0	••	1	0	1	0	0	$\log P^h_{18,j}/0$	0	$\left[\mathrm{O/H} ight]_{18,j}$	0	$\log P_{18,j}^l/$ 0
	0	••	0	1	1	0	0	$\log P^h_{N4258,j}/0$	0	$\rm [O/H]_{\it N4258,j}$	0	$\log P_{N4258,j}^l/0$
	0		0	0	1	0	1	$\log P^h_{M31,j}/0$	0	$[O/H]_{M31,j}$	0	$\log P^l_{M31,j}/0$
_	0	••	0	0	1	0	0	$\log P^h_{MW,j}/0$	0	$\left[\mathrm{O/H}\right]_{MW,j}$	1	$\log P^l_{MW,j}/0$
	0	••	0	0	1	1	0	$\log P^h_{LMC,j}/0$	0	$\left[\mathrm{O/H}\right]_{MW,j}$	1	$\log P^l_{LMC,j}/0$
	1		0	0	0	0	0	0	1	0	0	0
	0	••	1	0	0	0	0	0	1	0	0	0
	0		0	0	0	0	0	0	0	0	1	0
	0	••	0	1	0	0	0	0	0	0	0	0
	\ 0		0	0	0	1	0	0	0	0	0	0

Free Parameters $\mu_{0,1}$ **Absolute Host** Distances $\mu_{0.18}$ $\Delta \mu_{\rm N4258}$ ΔD (N4258) $M_{H.1}^W$ **Cepheid Luminosity** $\Delta \mu_{\rm LMC}$ $\Delta D(LMC)$ μ_{M31} $\Delta D(M31)$ b P-L slope (P>10 days) M_B^0 **SN Ia Luminosity** Z_W Metallicity, Cepheid Δzp Zeropoint, LMC

P-L slope (P<10 days)

*

 b_l

Error Matrix

 $5\log H_0 = M_B^0 + 5a_B + 25$

23 ANALYSIS VARIANTS, PROPAGATE VARIATION TO ERROR

Analysis Variants	H ₀			
Best Fit (2019)	73.5			
Reddening Law: LMC-like (R_V =2.5, not 3.3)	73.4			
Reddening Law: Bulge-like (N15)				
No Cepheid Outlier Rejection (normally 2%)	73.8			
No Correction for Cepheid Extinction	75.2			
No Truncation for Incomplete Period Range	74.6			
Metallicity Gradient: None (normally fit)	74.0			
Period-Luminosity: Single Slope	73.8			
Period-Luminosity: Restrict to P>10 days	73.7			
Period-Luminosity: Restrict to P<60 days	74.1			
Supernovae z>0.01 (normally z>0.023)	73.7			
Supernova Fitter: MLCS (normally SALT)	75.4			
Supernova Hosts: Spiral (usually all types)	73.6			
Supernova Hosts: Locally Star Forming	73.8			
Optical Cepheid Data only (no NIR)	72.0			

INCLUSION OF "ANALYSIS SYSTEMATICS"

The SH_0ES project

- Started in 2005 by Riess, Macri & collaborators to reduce uncertainty in H_0 (10% at the time) by using:
 - Only geometric distance indicators
 - Milky Way (parallaxes): HST+*Hipparcos* \rightarrow HST+*Gaia* (Riess+2021)
 - LMC (eclipsing binaries): $D=50 \text{ kpc} \pm 1.1\%$ (Pietrzynski+ 2019)
 - NGC 4258 (masers): D=7.58 Mpc ±1.5% (Reid, Pesce & Riess 2019)
 - Only modern & ideal SNe Ia (N = $2 \rightarrow 6, 8, 19$)
 - Photoelectric or CCD photometry; low reddening; observed pre-max
 - Single telescope (HST) & cameras, focusing on near-infrared (less affected by interstellar dust & variations in chem abundance)
 - Optical: \rightarrow third- & fourth-gen cameras
 - Near-infrared \rightarrow second-gen cameras
- Current uncertainty in SH₀ES ladder: 1.8%

OUTLINE

✓ Introduction

 \checkmark How to measure the Hubble constant to ${\sim}1\%$

Cosmological probes of the expansion

- New Physics in the dark sector?
- Next steps

COSMOLOGICAL PROBES

- ✓ Hubble constant
- White-dwarf supernovae
- Cosmic microwave background anisotropies
- Baryon acoustic oscillations
- Others (weak gravitational lensing, clusters of galaxies)
- Each one constrains different cosmological parameters
 → combine as many probes as possible

WHITE-DWARF SUPERNOVAE

- Peak luminosity of white-dwarf SNe = $3.9 \times 10^9 L_{\odot} (\pm 2.5\%)$
- Trace expansion of the Universe for ~10 Gyr (75% of its age)
 Using *Hubble* and the largest ground-based telescopes

COSMIC MICROWAVE BACKGROUND

- Primordial gas of Big Bang is completely ionized
 - Coupling of photons & electrons via Compton scattering
- Initial density fluctuations
 - Dark matter begins to collapse
 - Photon-baryon fluid undergoes acoustic oscillations
- ~379,000 yrs later... $e^- + p^+ \rightarrow H + \gamma$
 - Photons decouple and can now travel freely
- Density fluctuations → temperature "anisotropies"
 Angular power spectrum ↔ cosmological parameters

COSMIC MICROWAVE BACKGROUND

• 1994: COBE \rightarrow CMB blackbody & detection of anisotropy

• 2002: WMAP \rightarrow angular power spectrum of anisotropies

JAROSIK+ (2011); LARSON+ (2011)

COSMIC MICROWAVE BACKGROUND

• 2013: Planck \rightarrow angular power spectrum of T & polarization

PLANCK COLLABORATION (2020)

- CMB anisotropies probe many critical cosmological parameters
 - Baryon density ($\times H_0^2$)
 - Dark matter density ($\times H_0^2$)
 - Overall geometry of Universe
 - Time of recombination
 - Dark energy negligible at that time (a $\approx 1/1090$)

COMBINING THE CONSTRAINTS

BARYON ACOUSTIC OSCILLATIONS

PRIMORDIAL SOUND WAVES IN BARYON-PHOTON PLASMA FROZEN AS DENSITY WAVES AT RECOMBINATION

FIGURE BY D. EISENSTEIN/SDSS

PEEBLES & YU (1970); SUNYAEV & ZEL'DOVICH (1970)

BAO PEAK AS "STANDARD RULER"

H(A) VIA BAO

- BAO (calibrated via CMB) can map H(a)
- Can be used to <u>predict</u> H_0 for an *assumed* cosmology

BEUTLER+ (2011); ROSS+ (2015); ALAM+ (2016); BAUTISTA+ (2017); ZHAO+ (2018)

H(A) VIA BAO

- Compare <u>predicted</u> H₀ for an *assumed* cosmology against local measurement (Cepheids + Supernovae)
- Difference: systematic error(s) or "New Physics"?

BEUTLER+ (2011); ROSS+ (2015); ALAM+ (2016); BAUTISTA+ (2017); ZHAO+ (2018)

THE "HUBBLE TENSION" CIRCA 2018

RELATIVE LIKELIHOOD

PLANCK COLLABORATION (2018)

RIESS, MACRI, HOFFMANN+ (2016)

DO WE LIVE IN AN UNDERDENSITY?

- Our measurements already correct for density variations based on all-sky galaxy redshift surveys
- Theory predicts $\Delta H_0/H_0 < 0.4\%$ (discrepancy is 9%)
- >10³ supernovae empirically constrain $\Delta H_0/H_0 < 0.6\%$

DO WE LIVE IN AN UNDERDENSITY?

- Our measurements already correct for density variations based on all-sky galaxy redshift surveys
- Theory predicts $\Delta H_0/H_0 < 0.4\%$ (discrepancy is 9%)
- >10³ supernovae empirically constrain $\Delta H_0/H_0 < 0.6\%$

H₀ FROM GRAVITY

- "Time delay cosmography"
 - Photons from a distant (variable) quasar travel paths of different length through a gravity well along the line of sight

$$D_{\Delta t} \propto \frac{D_{\rm d} D_{\rm s}}{D_{\rm ds}} \propto \frac{\Delta t}{\delta \Psi} \propto \frac{1}{H_0}$$

MATERIAL COURTESY OF ANOWAR SHAJIB (UCLA) AND MARTIN MILLON (EPFL)

TIME-DELAY COSMOGRAPHY

Requires substantial amount of careful observations from ground and space, with detailed modelling

- Time delay measurement
- Estimate of line-of-sight effects •
- High resolution imaging of the • lens
 - Kinematics

MATERIAL COURTESY OF ANOWAR SHAJIB (UCLA) AND MARTIN MILLON (EPFL)

TIME-DELAY COSMOGRAPHY

• Yields completely independent (and blinded!) results

Recent estimates of H_0

- Gravitational time-delays (H0LICOW+STRIDES)
 - 7 lenses, blinded analysis: H₀=74.0±1.8 km s⁻¹ Mpc⁻¹ (Millon+2020, arXiv:1912.08027)
- Maser-based distances in the Hubble Flow (MCP)
 - 5 hosts beyond N4258: H₀=73.9±3.0 km s⁻¹ Mpc⁻¹ (Pesce+2020, arXiv:2001.09213)
- Tip of the Red Giant Branch
 - Gaia parallax, ω Cen: H₀=72.0±2.0 km s⁻¹ Mpc⁻¹ (Soltis+, arXiv:2012.09196)
 - LMC + HST/OGLE: H₀=72.4±1.9 km s⁻¹ Mpc⁻¹ (Yuan+2019, arXiv:1908.00993)

• Miras

• $H_0 = 73.3 \pm 4.0 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Huang+2020, arXiv:1908.10883)

RECENT HIGH-PRECISION H_0 MEASUREMENTS

SIGNIFICANCE OF THE DISCREPANCY

OUTLINE

✓ Introduction

\checkmark How to measure the Hubble constant to ${\sim}1\%$

✓ Cosmological probes of the expansion

> New Physics in the dark sector?

• Next steps

NEW PHYSICS IN DARK SECTOR?

Reviews: Di Valentino+, 2103.01183; Jedamzik, Pogosian & Zhao, 2010.04158

<u>Not so good</u>: decaying dark matter, w<-1, Swampland

<u>Better</u>: strong neutrino interactions, early dark energy, evolving e⁻ mass, early recombination, primordial B fields

<u>Best</u>: <your idea here>

1902.00534 (Kreisch et al 2019; moderately interacting) 1902.00534 (Kreisch et al 2019; strongly interacting) 1811.04083 (Poulin et al 2018; EDE model 1) 1811.04083 (Poulin et al 2018; EDE model 2) 1904.01016 (Agrawal et al 2019A) 1902.10636 (Pandey et al 2019; decaying DM; PLC+R18) 1902.10636 (Pandey et al 2019; decaying DM; Planck+JLA+BAO+R18) 1904.01016 (Agrawal et al 2019A; Neff) 2006.13959 (Gonzalez et al 2020; ultralight scalar decay) 1811.03624 (Chiang et al 2018; non-standard recombination 1) 1811.03624 (Chiang et al 2018; non-standard recombination 2) 2004.09487 (Jedamzik & Pogosian 2020; PMF model 1) 2004.09487 (Jedamzik & Pogosian 2020; PMF model 2) 1906.08261 (Agrawal et al 2019B; swampland & fading dark matter) 2007.03381 (Sekiguchi et al 2020; early recombination) ACDM

<u>"The Hubble Hunter's Guide", Knox and Millea, 2019</u> "Most Likely": Increase Expansion Rate Pre-recombination reduce sound horizon by 5-8% <u>Mechanisms:</u> Early dark energy or sterile (and/or self-interacting) neutrinos <u>Claims: not worse</u> fit to CMB, should produce new CMB features for next stage

NEW PHYSICS IN DARK SECTOR?

Reviews: Di Valentino+, 2103.01183; Jedamzik, Pogosian & Zhao, 2010.04158

<u>"The Hubble Hunter's Guide", Knox and Millea, 2019</u> "Most Likely": Increase Expansion Rate Pre-recombination reduce sound horizon by 5-8% <u>Mechanisms:</u> Early dark energy or sterile (and/or self-interacting) neutrinos <u>Claims: not worse</u> fit to CMB, should produce new CMB features for next stage

Specific hypotheses needed

- Present data provides formidable challenge!
 - "It's New Physics"—constrained precise H(z) data, CMB
 - "It's Systematics"—many measures, many independent rungs, duplicate measurements, Copernican principle
 - IMHO: Data too good for non-specific claims or nit-picking; there is a "signal" that demands specific, testable explanation
- Reasons for optimism:
 - New data: LIGO, DESI, Roman, Rubin, Euclid, JWST, Simons, S4
 - New clues: Early-vs-late σ_8 , CMB high-l, BBN?
 - Big Playground: ΛCDM is 95% dark, quantum gravity

OUTLINE

✓ Introduction

 \checkmark How to measure the Hubble constant to ~1%

✓ Cosmological probes of the expansion

✓ New Physics in the dark sector?

>Next steps

$H_0 \text{ to } \sim 1.4\%$

- HST + *Gaia* parallaxes to Milky Way Cepheids
 "Spatial scanning" technique: D = 0.5 → 4 kpc
- HST photometry for <u>all</u> observations
 - Milky Way and Large Magellanic Cloud
- 1% distance to LMC (eclipsing binaries)
 - N=8 \rightarrow 20, improved absolute calibration of technique
- Cepheid distances to more hosts of SNe Ia
 - Ongoing HST observations: $N = 19 \rightarrow 40$
- Improved understanding of Cepheid systematics
 - Detailed chemical abundances of Magellanic Cloud Cepheids

ONGOING HUBBLE OBSERVATIONS

- Cepheid searches in 20 additional hosts of SNe Ia
 - Some hosted 2 SNe -> N=40
- Mira search in nearest 4 of those hosts
 - Consistency check of Cepheid Distance Scale

SUMMARY

- SH₀ES project: calibration of modern, high-quality SNe Ia using Cepheids in the near-infrared
 - $H_0 = 73.2 \pm 1.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$; $\sigma(H_0) = 10\% \rightarrow 1.8\%$
 - 4.2 σ discrepancy wrt Λ CDM \rightarrow New Physics in dark sector?
- Goal: $\sigma(H_0) = 1.4\%$ later this year
 - HST+Gaia parallaxes to Milky Way Cepheids
 - 40 Cepheid distances to nearby SNe Ia

• The discrepancy is quite robust $(4-6\sigma)$, regardless of the combination of cosmological probes used