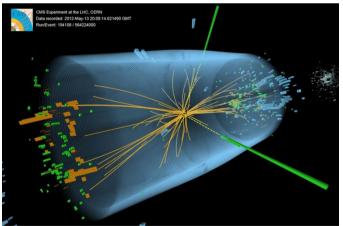
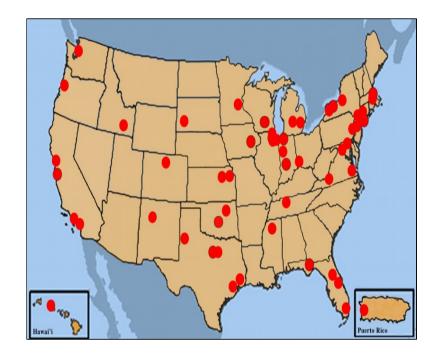


Helping Develop America's Technological Workforce

What is QuarkNet, Anyway?

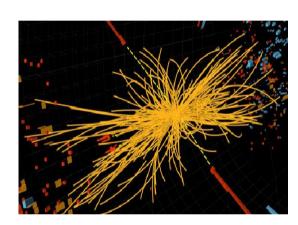

Jeremy Smith QuarkNet Fellow / Lead Teacher Hereford High School Baltimore, Maryland


Office of Science QuarkNet

QuarkNet

Helping Develop America's Technological Workforce Who are we? What do we do?

QuarkNet

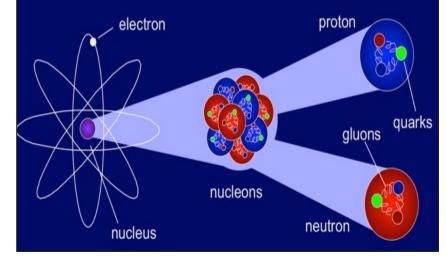


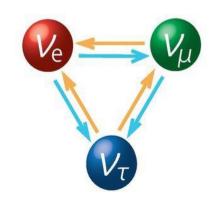

Helping Develop America's Technological Workforce

HEP is super-interesting!

What My Students Think:

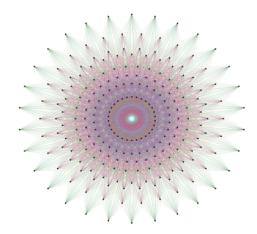
Particle physics is very cool but very difficult.





QuarkNet

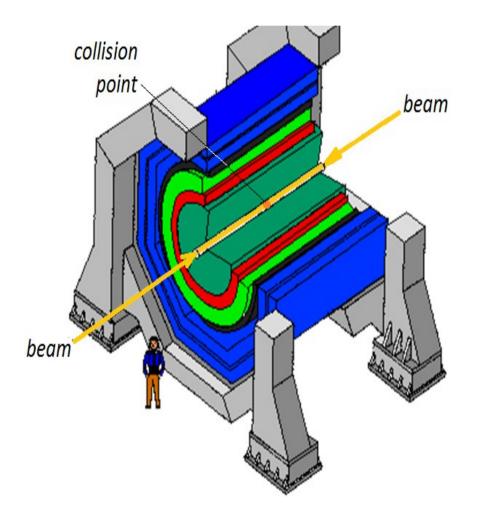
HEP is hard!

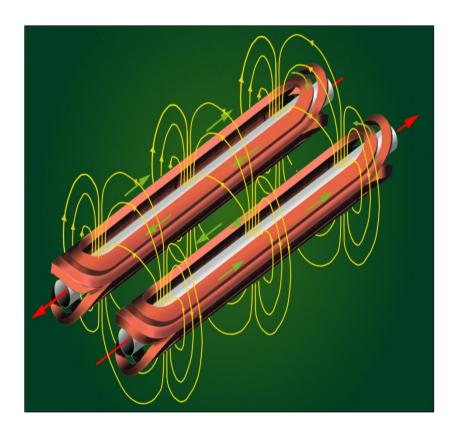

What My Students Think:

Particle physics is very cool but very difficult.

The Reality:

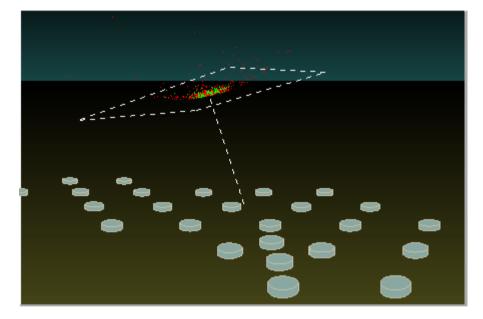
OuarkNet


Particle physics is very cool but very difficult.

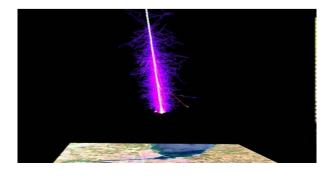

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} g^c_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s g^c_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s g^c_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s g^c_{\mu} g^c_{\nu} g^d_{\mu} g^d_{\nu} g^d_{\mu} g^c_{\nu} g^d_{\mu} g^d_{\mu} g^c_{\nu} g^d_{\mu} g^d_{\nu} g^d_{\mu} g$ $M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{i}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{i}{2c_{*}^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{i}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-}$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}))$ $igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\nu}^{-}W_{\nu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}W_{\nu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}) - A_{\nu}($ $W_{\nu}^{-}\partial_{\nu}W_{\nu}^{+})) - \frac{1}{2}g^{2}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\nu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\nu}^{0}W_{\nu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - C_{\nu}^{0})$ $Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\mu}^{-}W_{\mu}^{-})) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\mu}^{-}W_{\mu}^{$ $\beta_h \left(\frac{2M^2}{\sigma^2} + \frac{2M}{\sigma} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{2M^4}{\sigma^2} \alpha_h - \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^- \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^- \phi^-) + \frac{1}{2} (H^2 + \phi^0 \phi^-) + \frac{1}{2} (H^2 +$ $q\alpha_{h}M(H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}) \frac{1}{2}q^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{0})-W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+$ $\frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0})+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^$ $M\left(\frac{1}{c_{w}}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W_{\mu}^{+}\phi^{-})+igs_{w}(W$ $W_{\mu}^{-}\phi^{+}) - ig \frac{1-2c_{w}^{2}}{2c_{w}} Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}\left(H^2 + (\phi^0)^2 + 2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2\phi^+\phi^-\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}\left(H^2 + (\phi^0)^2\right) - \frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^0_{\mu}Z^$ $\frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) - \frac{1}{2}ig^2 \frac{s_w^2}{c_w} Z^0_\mu H(W^+_\mu \phi^- - W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^+) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^0(W^+_\mu \phi^- + W^-_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^-) + \frac{1}{2}g^2 s_w A_\mu \phi^- + \frac{1}{2}g^2 s_w A_\mu \phi^-) + \frac{1}{2}g$ $W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-} - G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0}_{\mu}G^{0$ $g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- + \frac{1}{2} i g_s \lambda_{ii}^a (\bar{q}_i^\sigma \gamma^\mu q_i^\sigma) g_\mu^a - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) \bar{e}^\lambda - \bar{\nu}^\lambda (\gamma \partial + m_\nu^\lambda) \nu^\lambda - \bar{u}_i^\lambda (\gamma \partial + m_\mu^\lambda) \bar{e}^\lambda - \bar{\mu}_i^\lambda (\gamma \partial + m_\mu$ $m_u^{\lambda} u_i^{\lambda} - \bar{d}_i^{\lambda} (\gamma \partial + m_d^{\lambda}) d_i^{\lambda} + i g s_w A_\mu \left(-(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) + \frac{2}{2} (\bar{u}_i^{\lambda} \gamma^{\mu} u_i^{\lambda}) - \frac{1}{2} (\bar{d}_i^{\lambda} \gamma^{\mu} d_i^{\lambda}) \right) +$ $\frac{ig}{4c}Z^{0}_{\mu}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s^{2}_{w}-1-\gamma^{5})e^{\lambda})+(\bar{d}^{\lambda}_{i}\gamma^{\mu}(\frac{4}{3}s^{2}_{w}-1-\gamma^{5})d^{\lambda}_{i})+$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}{}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left(\left(\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}\right)+\left(\bar{d}^{\kappa}_{j}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{j}\right)\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{\epsilon}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{\epsilon}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\epsilon}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{2}\frac{m_{\epsilon}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})$ $\frac{1}{4} \overline{\nu_{\lambda}} \frac{M_{\lambda\kappa}^R (1-\gamma_5) \hat{\nu}_{\kappa}}{M_{\lambda\kappa}^R (1-\gamma_5) \hat{\nu}_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^+ \left(-m_d^{\kappa} (\bar{u}_j^{\lambda} C_{\lambda\kappa} (1-\gamma^5) d_j^{\kappa}) + m_u^{\lambda} (\bar{u}_j^{\lambda} C_{\lambda\kappa} (1+\gamma^5) d_j^{\kappa}) + \right)$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}\right)-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_i^{\lambda}d_i^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_i^{\lambda}\gamma^5 u_i^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_i^{\lambda}\gamma^5 d_i^{\lambda}) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu\bar{G}^a G^b g_\mu^c + \frac{g}{2}\frac{m_d^{\lambda}}{M}g^{abc}\partial_\mu\bar{G}^a G^b g_\mu^c + \frac{g}{2}\frac{m_d^{\lambda}}{M}g^{abc}\partial_\mu\bar{G}^b g_\mu^c + \frac{g}{2}\frac{m_d^{\lambda}}{M}g^{abc}\partial_\mu\bar{G$ $\bar{X}^{+}(\partial^{2}-M^{2})X^{+}+\bar{X}^{-}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c^{2}})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{0}+\bar{Y}\partial^$ $\partial_{\mu}\bar{X}^{+}X^{0})+igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}-\partial_{\mu}\bar{X}^{+}\bar{Y})+igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} \partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}\dot{W}^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} \partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM\left(\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H\right) + \frac{1-2c_{w}^{2}}{2c_{w}}igM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{-}X^{0}\phi^{-}\right) + \frac{1}{2}gM\left(\bar{X}^{+}X^{0}\phi^{+} - \bar{X}^{0}\phi^{+}\right) + \frac{1}{2$ $\frac{1}{2c} igM \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0 X^- \phi^- - \bar{X}^0 X^+ \phi^- \right) + igMs_w \left(\bar{X}^0$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$

But...

...Particle physics <u>can</u> be accessible to students!



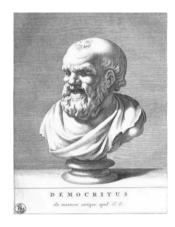
QuarkNet



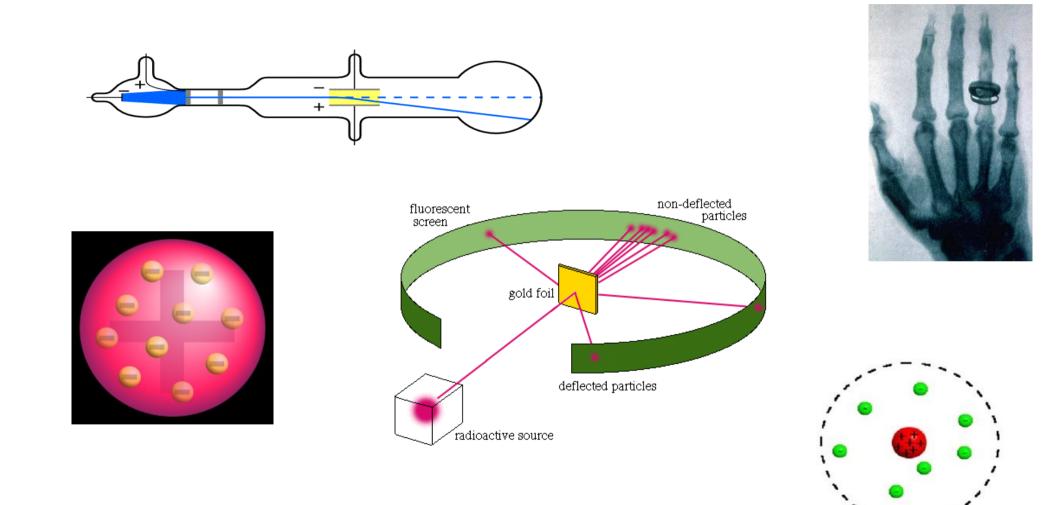


...Particle detectors <u>can</u> live in your classroom!

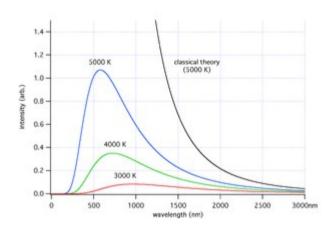
QuarkNet



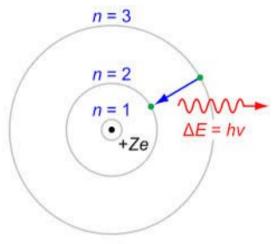
The basics

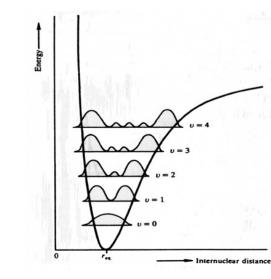

QuarkNet

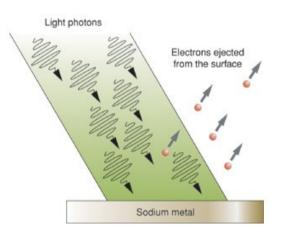
	H 1.01									
He 4.00	L] 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	0	F 19.0			
Ne 20.2	Na 230	Mg	AI 27.0	Si 28.1	P 310	8 221	CI 255			
Ar	K 39.1	Ca	Sc 45.0	Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co	Ni 58.7
	Cu 63.5	Zn	Ga	Ge	As 74.9	Se 79.0	Br 79.9			
Kr sa.s	Rb 85.5	Sr 87.6	¥ 88.9	Zr 91.2	Nb 92,9	Mo	To (99)	Ru 101	Rh	Pd 106
	Ag	Cd	In	Sn	Sb 122	Te 128	1			
Xe	Ce 133	Ba 137	La 129	H! 179	Ta 181	W 184	Re 180	Os 194	lr 192	Pt 195
	Au 197	Hg	Ti 204	Pb 207	BI	Po (210)	At (210)			
Rn 222)	Fr (2220)	Ra (225)	Ac (227)	Th 222	Pa (231)	U 238	der auf -	-		

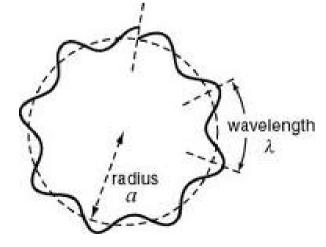


The models

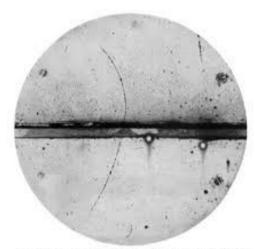


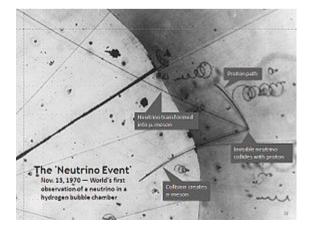

QuarkNet

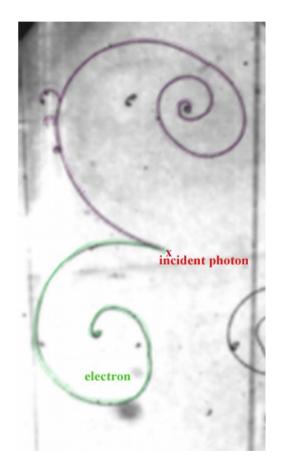

The quantum

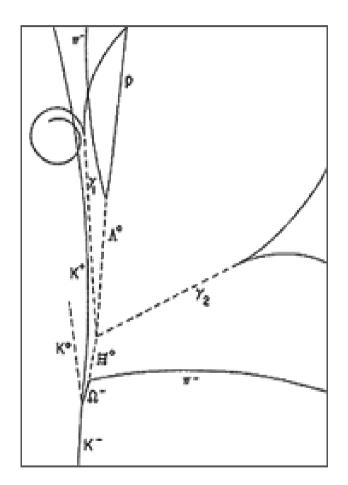


QuarkNet



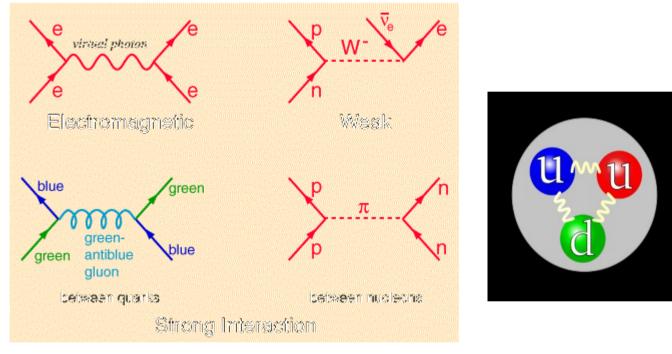


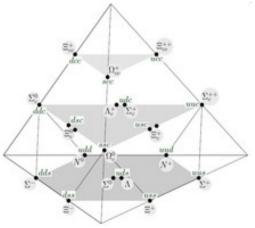

The particles

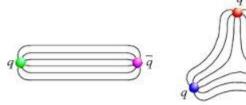


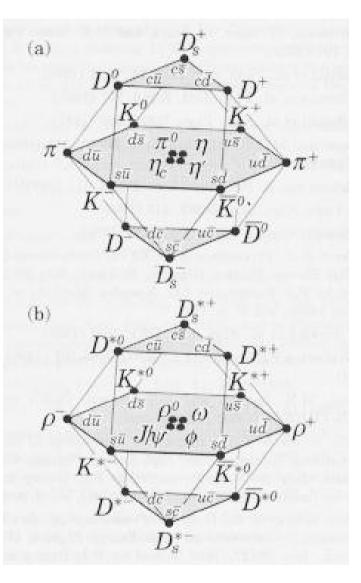
QuarkNet

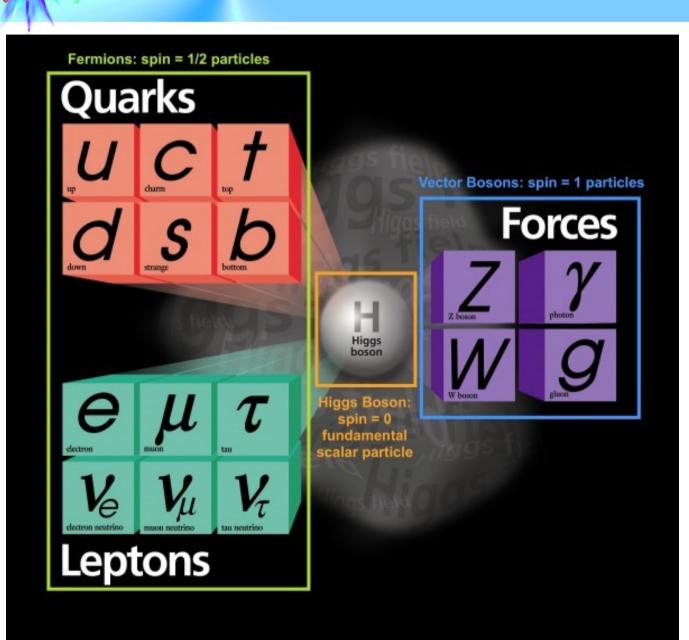
The 1. A 64 million cuty generators $(H_0 \rightarrow 1.1 \times 10^6 \text{ gamma total answing through a 6 new bard plane$ $and eccurating as a 15 million with positive <math>(H_0 \rightarrow 1.2 \times 10^6 \text{ gamma total})$. The length of this latter path is at meas one to these generators then the generator between the protone gain of these streams.



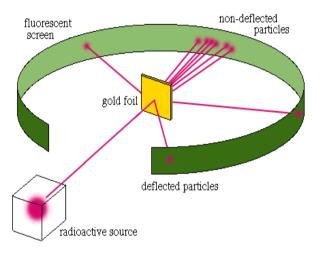


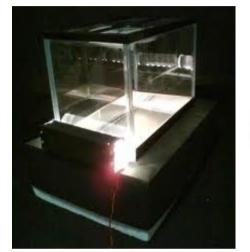


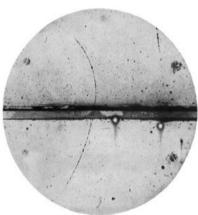

The fields

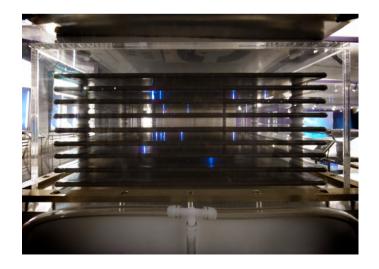


QuarkNet

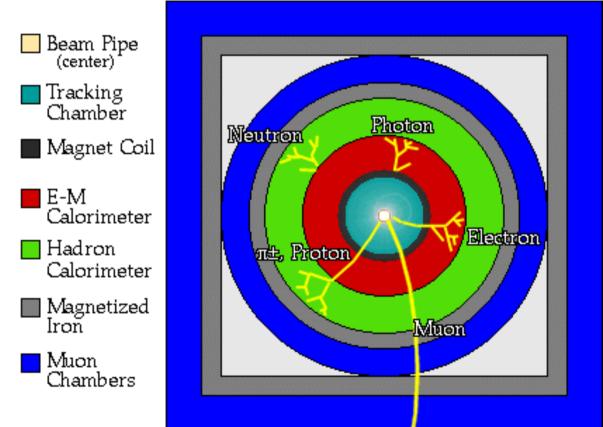

The new periodic table

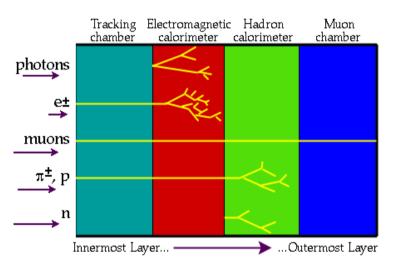

QuarkNet

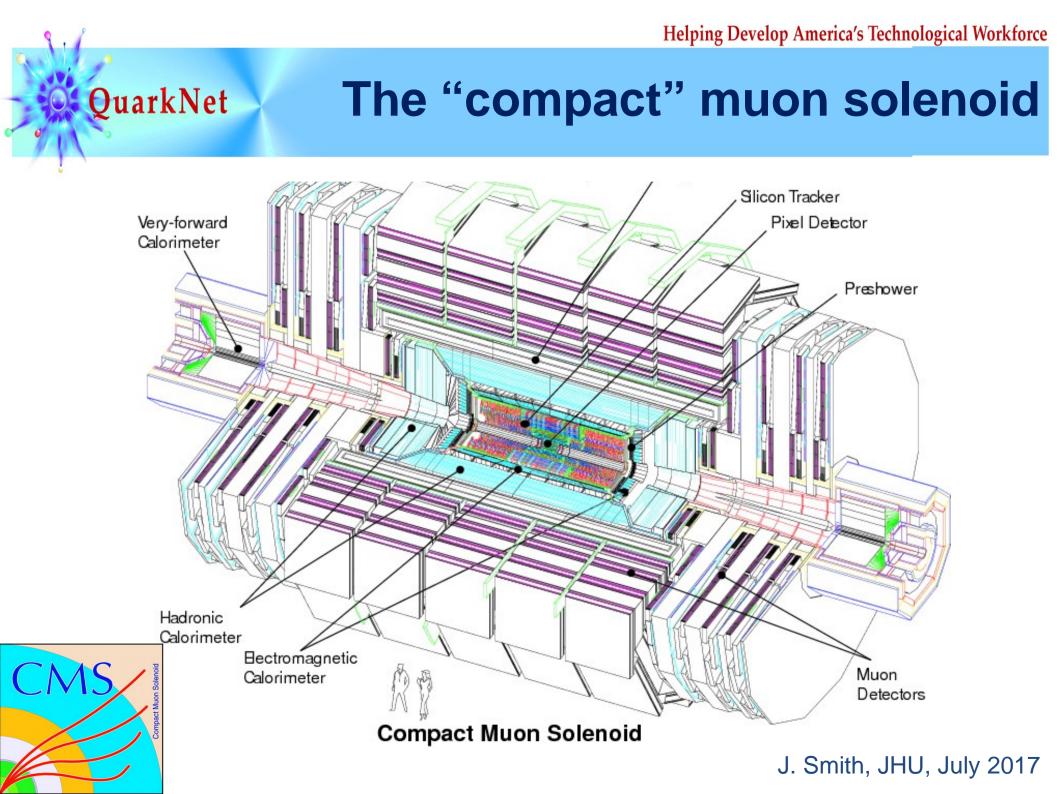

Helping Develop America's Technological Workforce


The detectors

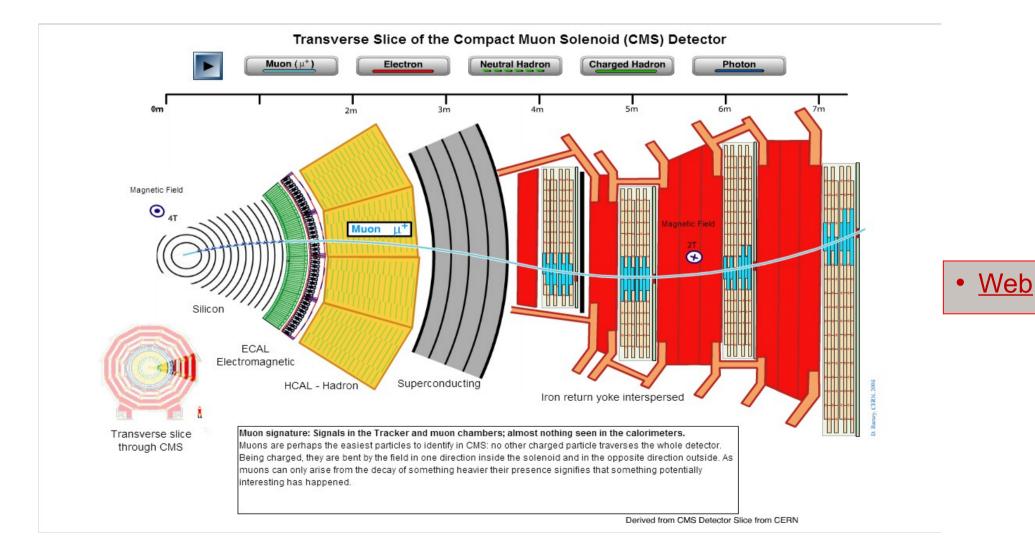

QuarkNet



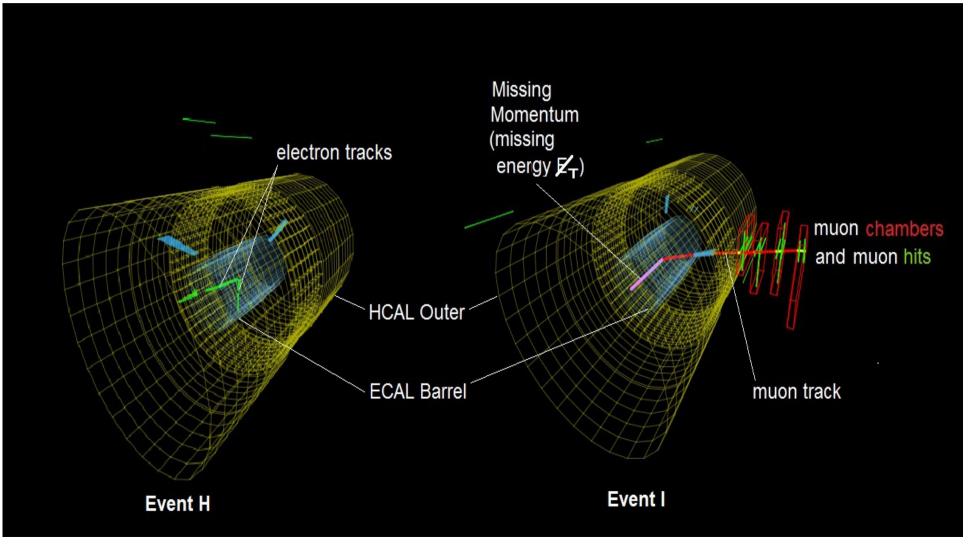



Modern detectors

A detector cross-section, showing particle paths


QuarkNet

So how do we do it?



QuarkNet

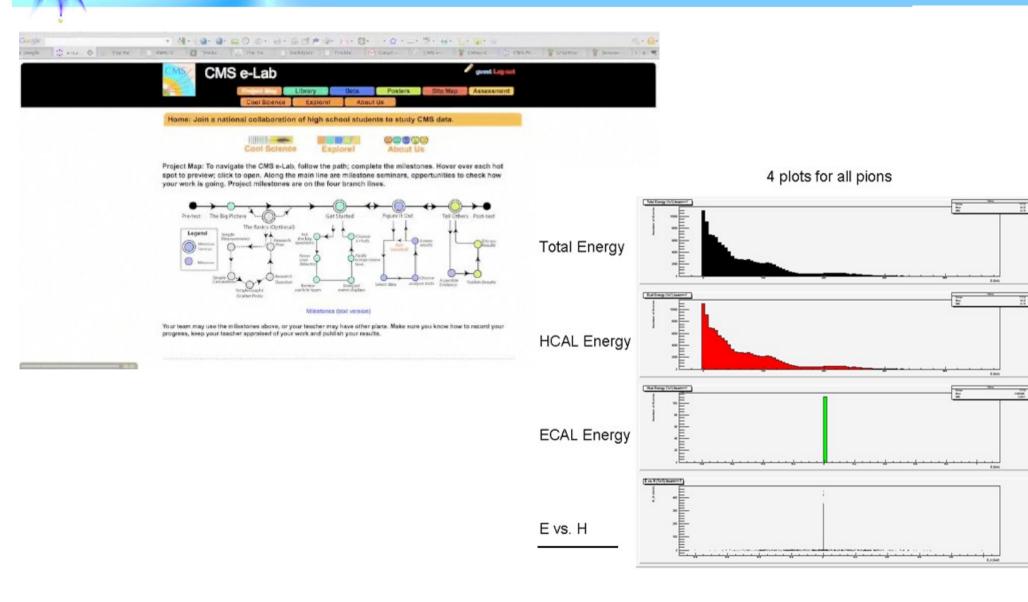
Event Display

(All praise to Tom McCauley!)

QuarkNet

So how do we do it?

Focus on the Conservation Laws:


• Energy

QuarkNet

- Momentum
- Charge

Run	Event	E1	px1	py1	pz1	pt1	eta1	phi1	Q1
147390	543767492	24.521	3.89773	-16.1627	-18.0237	16.626	-0.939585	-1.33416	-1
147390	551904480	42.8325	-16.4724	4.63309	-39.266	17.1116	-1.56816	2.86741	1
147390	286521299	78.6993	20.7346	-22.7603	72.4267	30.7889	1.59096	-0.831937	-1
147390	348830108	35.7096	-12.6783	10.2126	-31.7827	16.2799	-1.42208	2.4635	1
147390	348839604	12.8308	-9.97245	-5.51779	-5.89352	11.3972	-0.496456	-2.63622	-1
147390	349394529	7.56567	4.40404	-1.89451	-5.85275	4.79423	-1.02921	-0.406246	-1
147390	355531024	16.3413	-2.45327	-14.7782	6.52859	14.9805	0.423073	-1.7353	1
147390	5827229	17.0766	-10.7266	9.22474	-9.56319	14.1476	-0.632858	2.43133	1
147390	580193569	16.2956	12.8777	2.01408	9.78035	13.0342	0.693436	0.155144	1

Get into the data

QuarkNet

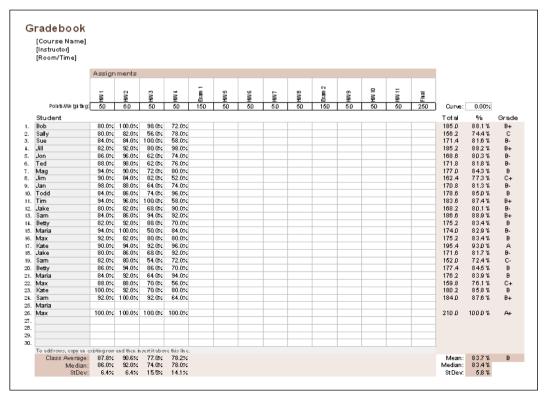
Completely unsalable skills

ROOT has a steep learning curve.

And these files are *YUGE*.

From the CMS OpenData website:

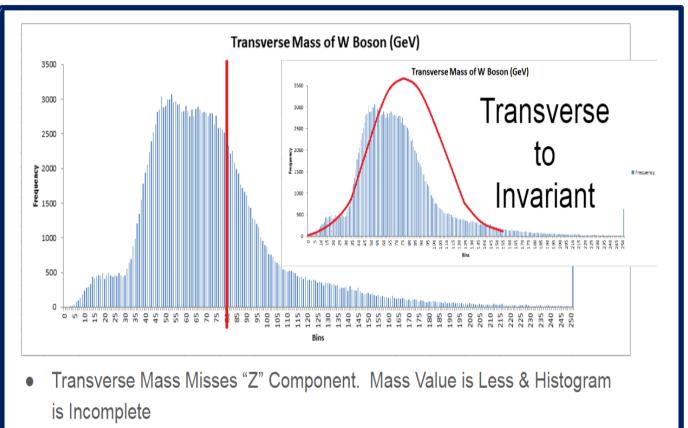
QuarkNet


003DD74E-653E-E311-9F63-002590494D18.root xrootd	Size: 4.2 GB
004978E1-433E-E311-9E08-003048F0107A.root xrootd	Size: 3.7 GB
0059D787-243E-E311-B28B-C860001BD85C.root xrootd	Size: 4.2 GB
007228EF-523E-E311-AD79-0025904B2FD8.root xrootd	Size: 4.2 GB
00B2E805-643E-E311-BFCC-C860001BD85A.root xrootd	Size: 4.2 GB

ROOT is not accessible for most physics teachers and students.

But we can use spreadsheets. ©

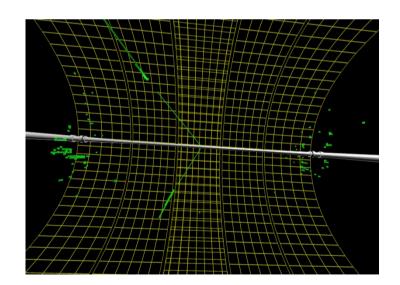
OuarkNet

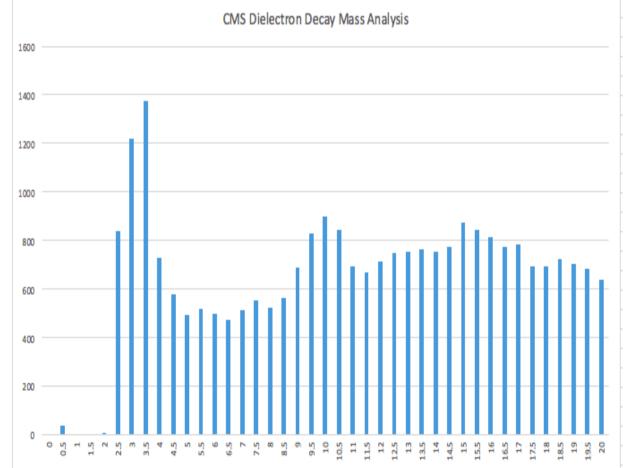


Helping Develop America's Technological Workforce

How well do the teachers do?

Sample teacher work from QNet Data Camp 2016:

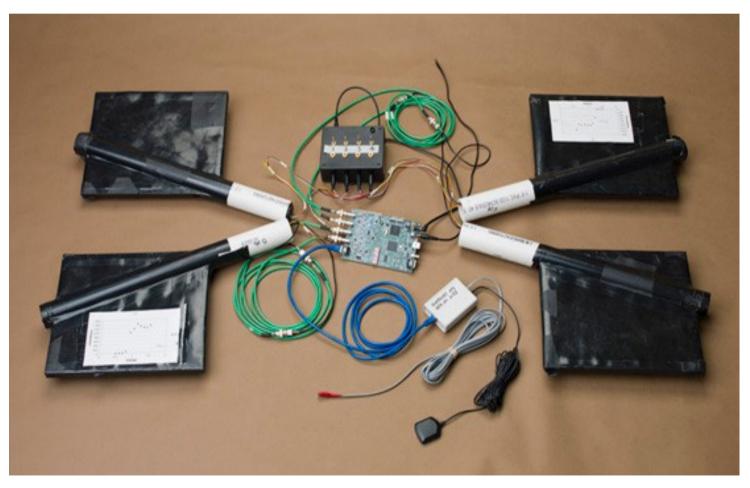

• Look to Top End of Standard Deviation of Histogram, Where "Invariant" Peak is Expected


3 days prior, they didn't even know what a W boson is!

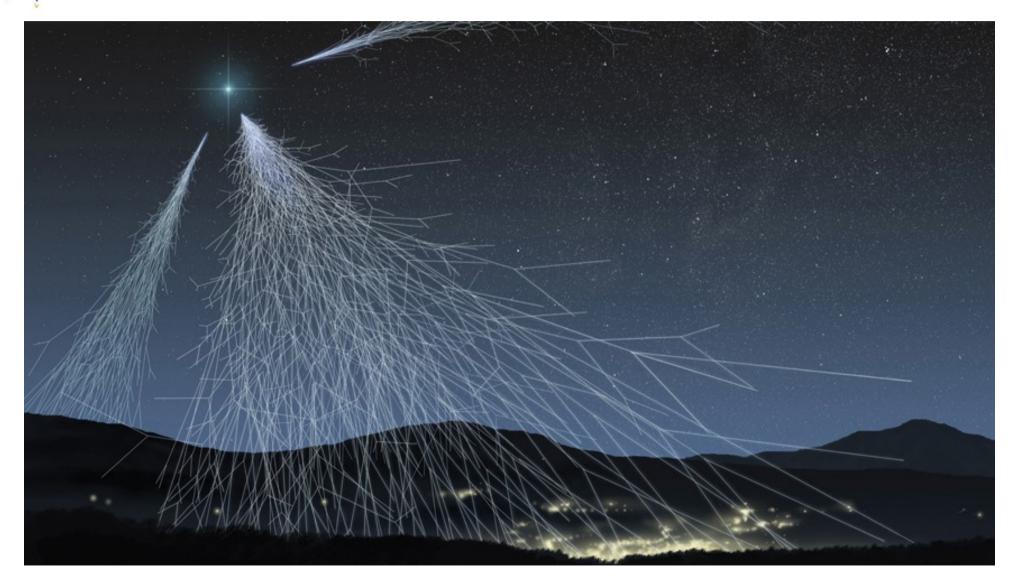
QuarkNet

How well do the students do?

Sample *high school student* work, 2017:



The CRMD

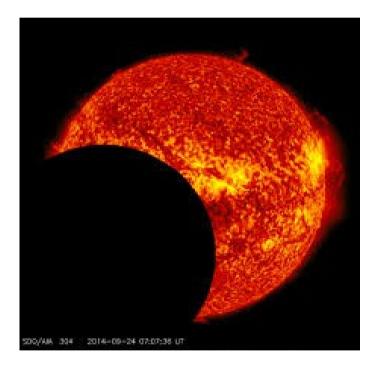

...Particle detectors can live in your classroom!

QuarkNet

The CRMD

QuarkNet

The CRMD

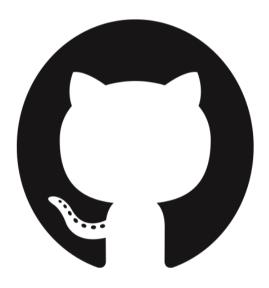

Project Types Available:

OuarkNet

- Flux (simple "vary X, observe Y" studies weather, angle, shielding, etc.)
- **Shower** (how far apart are the daughters of an event? How common are the big ones?)
- Time of Flight (just how fast are they moving?)
- Lifetime (how long do muons live?)

Helping Develop America's Technological Workforce

The CRMD



QuarkNet

You don't even need a detector to use the e-lab!

Example: upcoming solar eclipse

Alternative?

QuarkNet

Coding is important in science! High schools are finally starting to understand this.

So: can we get students to use particle physics as a *context* for writing code?

Web

QuarkNet

Jupyter: no need to reinvent wheel!

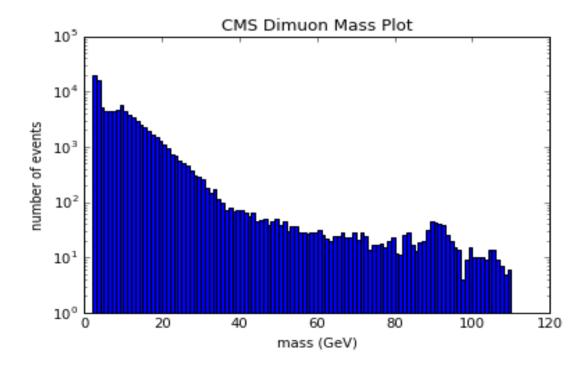
data = pd.read_csv('http://opendata.cern.ch/record/303/files/dimuon.csv')

Analyze dielectron data instead by referencing this URL: # http://opendata.cern.ch/record/304/files/dielectron.csv

We can view the first few rows of the file we just imported.

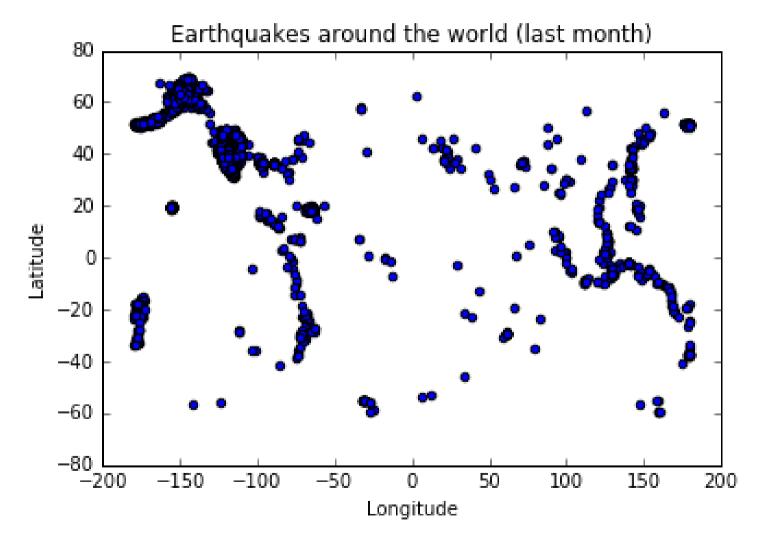
Out[3]:

	Туре	Run	Event	E1	px1	py1	pz1	pt1	eta1	phi1	Q1	E2	px2
0	GT	146511	25343052	7.33390	2.060420	5.88580	-3.85836	6.23602	-0.584812	1.234060	-1	5.20755	-1.5501
1	GG	146511	25341481	18.46720	8.033950	-3.94072	-16.15410	8.94839	-1.352990	-0.456026	-1	10.72950	6.2947(
2	GG	146511	25390065	7.70222	-0.248771	4.08338	6.52511	4.09095	1.246340	1.631640	-1	6.90202	-3.0243
▲													+



Make plots and tweak them!

In [4]: # adding a ; at the end of the next line will "suppress" the text output of the hi
le
plt.hist(data.M, bins=120, range=[0,120], log=True)
plt.title("CMS Dimuon Mass Plot")
plt.xlabel("mass (GeV)")
plt.ylabel("number of events")


Out[4]: <matplotlib.text.Text at 0x1033eb278>

Adapt and repurpose!

Same code, adapted for a dataset from the USGS earthquake database:

QuarkNet

In summary

QuarkNet does a lot of things:

- Teacher Workshops
- Masterclasses

QuarkNet

- CMS e-lab support
- Cosmic Ray e-lab support (and detectors)
- Trips to CERN, Fermilab, etc.
- Leadership opportunities
- (in works) Coding in K-12
- (in works) Neutrino stuff