Picosecond timing for particle detectors

Matthew Rudolph

Syracuse University
August 16, 2023

LHC frequency

- The LHC collides bunches of protons every $25 \mathrm{~ns}\left(25 \times 10^{-9}\right)$
- It can't get faster, but we want to have more data (higher luminosity)
- So why would we need to know when particles hit our detector within $10 \mathrm{ps}\left(10 \times 10^{-12}\right)$ or better?

LHC frequency

- The LHC collides bunches of protons every $25 \mathrm{~ns}\left(25 \times 10^{-9}\right)$
- It can't get faster, but we want to have more data (higher luminosity)
- So why would we need to know when particles hit our detector within $10 \mathrm{ps}\left(10 \times 10^{-12}\right)$ or better?
- Within one "bunch-crossing", the time spread is $\sim 150 \mathrm{ps}$!

Quiz 1

- How long does it take to go one meter at the speed of light?

Quiz 1

- How long does it take to go one meter at the speed of light?

$$
3.3 \mathrm{~ns}
$$

LHCb's strength

17 mm 9 mm

Pile-up

40 simultaneous collisions is a huge combinatorial problem

With timing

Aligned time [ns]

Quiz 2

A particle in our detector has a momentum $p=10 \mathrm{GeV} / \mathrm{c}$. If it's a proton, how long does it take to go 10 m ? Hint: $v \approx 0.995 c$

Quiz 2

- A particle in our detector has a momentum $p=10 \mathrm{GeV} / \mathrm{c}$. If it's a proton, how long does it take to go 10 m ? Hint: $v \approx 0.995 \mathrm{c}$

33.52 ns

- How long would it take a pion? ($v \approx 0.99995$)

Quiz 2

- A particle in our detector has a momentum $p=10 \mathrm{GeV} / \mathrm{c}$. If it's a proton, how long does it take to go 10 m ? Hint: $v \approx 0.995 \mathrm{c}$

33.52 ns

- How long would it take a pion? $(v \approx 0.99995)$

33.58 ns

- $\Delta t \approx 60 \mathrm{ps}$!

Challenge

- Ultimately, our detector signals are effectively an analog electrical pulse on some wire
- Typical timescales 1 ns to 10 ns
- Need to develop new electronics to determine time on tens of thousands
 of channels every 25 ns !

