vDUNE Status

Lucas Sorenson, David DeMuth, March 30, 2021
Link to Slides

Previous Progress

Goal: Develop a 3D game environment conducive for use by
high school teachers and their students to better identify
with the inner workings of the DUNE particle detector as a
complement to a supernova focused neutrino masterclass.

A 3D model of the DUNE underground lab at Lead, SD
was developed using NavisWorks models created by
J. Fowler and hosted at www.edms.cern.ch

The far detector complex uses Epic Games UnReal
Engine to render environments.

An avatar can navigate and interact with selected
model elements and can walk into the open cryostat
to learn explore detector components.

Current FS integrated model

Overview of Progress

ProtoDUNE 1 data has been converted to JSON data
structures and displayed in a model detector

e QT generated metadata for each event added to json data
structure, and parsed for event display information.

e Event display boundary box

o When processed in the QT ETL process, metadata is
produced for events including information about the event
boundary.

o This data can be used to position cameras and scale the
event to display it in our virtual environments.

Tools & Decorators

Tools can be used to interact with both the Character

environment and with neutrino events.
o With a laser pointer the user can extract more

inventory.
e Decorators are used to provide variations on
how information is displayed to the user. Thus
far we have focused on two main

implementations of this:
o Displaying information about a player.
o Displaying information about a neutrino point.

Decorator Canvas

+ username: string

7

e

Player name

information about a subject.

o The user can measure the distance between two ﬁ;’
points.

o Items can be picked up and stored in a user’s ——

+ role: AvatarRole

Decorator

+ create(outer: UObject): void
+ update(deltaTime: float): void

+ destroy(): void

T

Username Decorator

Object Type Decorator

- views: List<Perspective>

- views: List<Perspective>

Neutrino Event Lifecycle

1. When an event actor is loaded, Neutrino Event
Data is extracted from a JSON file.

2. Data pertaining to each neutrino point is stored
on an object in memory.

3. A 3D mesh is generated for each point based on a
simple sphere model.

4. RGB values for each point are derived from its

r
e

. . charge.
v e 5. The resulting color is applied to a procedurally
[(i generated material, which is then applied to the
-) mesh for the corresponding neutrino point.

%= Content

Material Code

ANeutrinoPoint::set_color_by_charge(charge)
(LogClass, Error, TEXT(), charge)
(charge < 08)
(!point_mesh_)
spectrum_position
spectrum_position = charge / max_charge_
(LogClass, Error, TEXT(), charge, max_charge_)

category = get_category(spectrum_position)
rgb = get_rgb(category)

UMaterialInstanceDynamic *material = UMaterialInstanceDynamic::Create(material_interface_
(!material)

material->SetVectorParameterValue(FLinearColor(rgb[0], rgb[1], rgb[2], 1
point_mesh_->SetMaterial(®, material)

Interactive Particle Track
Elements

Goal: From an event, allow user to select a point on any
track to review metadata.

e All points on the track become touchable by a
pointable laser tool.
° Pop up window to display point data:
o Position (x,y,z)
o Charge, and charge density
o Associated Track id
o Sum of charge on track

° Popup window can include a graphic such as a
histograms.

° Popup window includes links that can be
selected by the avatar that open an in game

browser, allowing for more fluid content

hosting.

Future and In-progress Use Cases

Networking (Connecting to vDune Instances and multiple user interaction)
a. Assigning user roles and allowing teacher to gather students into a specific location.

b. Defining user abilities and actions specific to their user role.
Display information about characters or objects.
Introducing new avatar actions including dropping a ball.
Giving the user the ability to get a closer view of individual neutrino tracks and points.

iAW

Loading neutrino events asynchronously.

