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why is the ‘half-life’ slightly
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Abstract

The ‘radioactive dice’” experiment is a commonly used classroom analogue to
model the decay of radioactive nuclei. However, the value of the half-life
obtained from this experiment differs significantly from that calculated for
real nuclei decaying exponentially with the same decay constant. This article
attempts to explain the discrepancy and suggests modifications to the

experiment to minimize this effect.

Introduction

The ‘radioactive dice’ experiment is commonly
performed in schools as an analogy of the decay
of radioactive nuclei. A large number of six-sided
dice are thrown simultaneously. Those showing a
particular number (for example a six) are deemed
to have decayed like radioactive nuclei. These
dice are removed and the remaining ‘undecayed’
dice are counted. This number of ‘undecayed’
dice is recorded and represents the number of
undecayed nuclei remaining after a certain interval
of time. The ‘undecayed’ dice are then thrown
and, again, those showing a six are removed
and the remainder counted. This goes on for
a number of throws, resulting in a reduction in
the number of ‘undecayed’ dice as time goes
by. Whilst this experiment is meant to represent
the decay of radioactive nuclei with a supposed
decay constant A it became clear to the authors
over the course of many years of conducting this
experiment in the classroom that the ‘half-life’
(thaf) the students obtained experimentally from
their dice was consistently lower, on average, than
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the value predicted using the formula

thar = In2/X.

In this experiment it is always assumed that
because the dice have one chance in six of
showing any particular number, then this equates
to radioactive decay of real nuclei with a decay
constant of 1/6, since the decay constant is
traditionally described as being the probability of
any individual nucleus decaying within unit time.

Decay constant

First, though, let us be clear what the radioactive
decay constant describes—and it is instructive to
realize that it is rather carefully called a decay
constant not a decay probability or a decay
proportion. Depending on the units in which it
is measured, its value can be less than, or greater
than, one.

How can we have a ‘probability’ greater than
one? Imagine a number of nuclei, with a decay
constant of A s~!, decaying over the course of one
second of time, and at the very start of the second
the number of undecayed nuclei is Ny. Then the
instantaneous activity (in Becquerel) at the start is
197

PHYSICS EDUCATION 47(2)


http://www.iop.org/journals/physed
mailto:arthurphysics@live.co.uk
mailto:i.hart@oratory.co.uk

A Murray and I Hart

Table 1. Number of undecayed dice/nuclei with an initial sample size of 1000.

Dice decay Nuclei decay
Number of mass ~ Number of undecayed Number of undecayed
throws dice nuclei Elapsed time (h)
0 1000 1000 0
1 833 846 1
2 694 717 2
3 579 607 3
4 482 513 4
5 402 435 5
6 335 368 6
7 279 311 7
8 233 264 8
9 194 223 9
10 162 189 10
11 135 160 11
12 112 135 12

ANy. If this activity were maintained throughout
the whole of the one second then the number of
nuclei that would have decayed by the end of the
second is also ANj.

What actually happens of course is that the
activity decreases throughout the second as the
number of undecayed nuclei decreases. In the
case of long-lived isotopes this decrease should
be small and A is the approximate proportion of
the original nuclei that decay in that second. For
short-lived isotopes, however, the decrease can be
virtually 100% and ANy becomes the number that
would have decayed in one second if it had been
possible to maintain the initial rate of decay for
the whole of the second.

Take the example of a radioisotope with
thaf = 13.9 ms. This time has been chosen to
give a nice round number for the decay constant of
50 s~! or, in different units, 0.05 ms~'. Suppose
we begin the second with a thousand of this
isotope’s short-lived nuclei. Then by the end of
that second 50000 of these nuclei would have
had time to decay if the high activity at the
start of the second could have been maintained—
clearly far more than are actually present in the
sample. By the same token, 50 would decay in
one millisecond if the activity at the start of the
millisecond could have been maintained. In fact
only 49 (approximately) decay in the millisecond.

So let us now consider two sets of radioactive
decay: the ‘decay’ of a thousand ‘radioactive dice’
and the decay of a thousand real radioactive nuclei.

Incidentally, we will henceforth keep the
‘quotation marks’ to a minimum: readers will
have probably realized by now that the dice are
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not really decaying because they are not really
radioactive.

The mathematics of the decay of the
radioactive dice

Imagine that we were to throw and count the
dice at the leisurely rate of once every hour.
The simplest way to conduct the experiment is
to start with 1000 dice which are all thrown
simultaneously at the end of the hour. So one-
sixth of them will be removed at the end of the first
hour, leaving 833 undecayed if the statistics work
perfectly. In general terms the number remaining
undecayed after the first simultaneous mass throw
is given by

Ny = 1000(1 — 1/6).

After two throws the number is now

N> = 1000(1 — 1/6)(1 — 1/6) = 1000(1—1/6),

whilst in general after n mass throws we have

N, = 1000(1 — 1/6)".

So we see that the decay is given by a
geometric progression. The number of undecayed
dice obtained using this method for the first 12
throws is shown in table 1.

The mathematics of the decay of real
radioactive nuclei

We now need to make a link between the actual
elapsed time ¢ used in radioactive decay formulae,
and the time interval represented by each mass
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Figure 1. The histogram shows dice decaying as a
result of a series of mass throws. The smooth curve is
the decay of real nuclei.

throwing of the dice. The decay of real nuclei is
given by the exponential equation

N, = Noe™

where N, is the number of undecayed nuclei
remaining after a time ¢. If we now make the
decay constant 1/6 h~! and let Ny be equal to 1000
nuclei, this equation becomes

N, = 1000e~"/°

and we can count the number of undecayed real
nuclei once every hour just like the dice. These
values are also shown in table 1 for the first 12 h
of decay.

The two decays, a histogram for the dice and
a continuous curve for the nuclei, are shown in
figure 1.

Half-life of the dice decay
Inspecting the number of undecayed dice in the
table tells us that the number halves from 1000 to
500 somewhere between throws 3 and 4. In fact
using logarithms tells us that if
(1-1/6)"=0.5 then

n = In(0.5)/In(1 — 1/6)
and thus n ~ 3.8.

So after approximately 3.8 ‘throws’
number of undecayed dice has halved.

the

Half-life of the nuclei decay

For real nuclei the graph tells us that the half-life is
not 3.8 h, but is instead more than 4 h. In fact using
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the exponential expression for radioactive decay
thar = In2/A =1n2/(1/6)

gives a value for #,yr of 4.16 h, significantly
different from the value obtained for the dice.

Why are the two half-lives
different?—qualitative approach

Consider the time interval 0—1 h, i.e. the very first
hour, of the two decays. The dice only decay
when they are thrown at the end of that hour. The
number of undecayed dice stays constant at 1000,
throughout the hour, and then suddenly drops to
833 at the end of that time, which is why the decay
is represented in figure 1 by a histogram.

However, with real nuclei the decay continues
throughout the hour. If we start with 1000
undecayed nuclei, we are down to 999 after
(approximately) 22 s, to 998 after 44 s, to 997 after
65 s and so on. The decay rate slows as we proceed
through the first hour, i.e. as the nuclei decay
one after another, the interval between successive
decaying nuclei does not have the average value of
approximately 22 s: it increases as time passes.

We see that, compared to the dice, fewer
nuclei decay in the first hour because the decay rate
of the nuclei (the activity) falls over the course of
that hour, because the number of undecayed nuclei
also falls during this time. The same argument
applies for subsequent hours.

A closer analogy?

To bring the dice analogy closer to that of real
nuclei, imagine that instead of throwing all 1000
dice at the end of 1 h we do things differently:
we throw the dice one at a time, once every 3.6 s,
over the course of the first hour: 0—1 h of elapsed
time. Some will, when they land, show a six
and decay. We note the time interval between the
appearances of these sixes. Averaging over the
hour we would expect the mean value of this time
interval between successive decays to be constant
at 21.6 s and unlike real nuclei this interval does
not increase as we progress through the hour. It is
worth pointing out, however, that whilst this may
bear more resemblance to the continuous decay
of real nuclei, it is mathematically identical to
throwing all the dice simultaneously at the end of
the hour.
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Table 2. Comparison of the time interval between successive decays of dice/nuclei.

Time interval between
successive ‘decays’ of

Number of undecayed

Time interval between
successive decays of

dice/nuclei dice (s) real nuclei (s)
1000 — —

999 21.611 21.611

998 21.611 21.632

997 21.611 21.654

996 21.611 21.676

995 21.611 21.698

For real nuclei with #,, = 4.16 h, the increase
in the time interval between the decays of the first
five nuclei is as shown in table 2.

Continuing with this closer analogy, how do
we proceed with the dice over the course of the
second hour, from 1 to 2 h of elapsed time? We
start this hour with a mean of 833 undecayed dice
which need to be thrown regularly over the next
3600 s. We again throw the dice one at a time but
now once every 4.32 s. We would now expect sixes
to turn up once every 25.93 s on average, again at a
constant rate but slower than that of the first hour.

For the third hour the throw rate for the 695
undecayed dice is once every 5.18 s and the ‘six
rate’ will have slowed to one every 31.08 s.

Plotting these results in figure 2 give a series
of points, situated at the end of each hour,
which are joined by straight lines (indicating a
uniform decay rate) whose gradients decrease as
the number of hours increases. Compare this with
the smooth exponential decay of real nuclei.

As with the simple version of the experiment,
the half-life of the dice is still 3.8 (hours).

Why are the two half-lives
different?—quantitative approach

In mathematical terms we get different half-lives
because the decay of the dice is described by a
geometric progression whereas the decay of the
nuclei is described by an exponential function.
The progression and the function are not identical,
however, they are similar initially, so how can we
compare the divergence of these two functions?
The clearest approach that we have found is
to represent each of these functions as a series
expansion. For the dice we have the expression

N, = No(1 —1/6)"
where n = 0, 1, 2, 3, ... mass throws.
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Figure 2. The blue ‘curve’ is actually a series of
disjointed straight lines showing the dice decaying by
being thrown one at a time. Again, the smooth red
curve is the decay of real nuclei.

Since the general binomial expression (1+x)"
may be represented by the following series
nn—1) , nn—-1Hn-2) ,

n O F 31 e
we can see that since x in this expression is given

by —1/6 for our case of six-sided dice, the series
expansion for the dice is given by

Ny =Noll = in+ Sn(n—1)
— mEn(n —D(n—2) + 1.

In contrast the exponential expression govern-
ing the decay of real nuclei is

l4+nx+

)

N, = Noe '/,

and since the expansion of the general exponential
function e* is given by
{ x? X3
+x + 5 + ? + ey
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we can see that the series expansion for the nuclei
is

Ny = No[l — Lt 4+ 512 — t? 4+ 1.

It is clear therefore that the two series are
very similar in form, but will gradually diverge as
either ¢ or n become larger. In fact it is far more
instructive to look at these expansions for the more
general case in which the dice being used to model
the decay have a number of sides p, which would
imply a decay constant of 1/p. In this case it can
be shown that the corresponding series expansions
for the dice and the nuclei respectively are

1 1
o= 301 (5 g b )

) 1 3
+ n sz—i_ﬁ—i_” — ...
and
N, =N |1 ! 2 (1
+ = INg — 1 ; +1 2'—p2 — .

It is clear from the analysis that the smaller
the decay constant, the smaller the divergence,
since the additional terms in the expansion of
the dice expansion are made up of increasingly
higher orders of p. The solution would seem to
be to use dice with more sides than six. Such
polyhedral dice are used widely in role-playing
and war-games, and typically have either 4, 6, 8§,
10, 12 or 20 sides. Twenty-sided dice, with a decay
constant of 0.05, would give a dice half-life of
13.5 and a nuclei half-life of 13.9—a much closer
agreement than that obtained for their six-sided
cousins. They are though, nowhere near as cheap
as the small plastic or wooden cubes which have
one face painted a different colour from the other
five and which substitute for dice in the classroom
version of the experiment. They would also need
to be thrown an inconveniently high number of
times to produce useful results.

Conclusion

We have seen that whilst the decay of radioactive
nuclei can be modelled reasonably accurately
using the throwing of six-sided dice, closer
inspection reveals that the half-life obtained using
dice is significantly different from that of real
nuclei with a decay constant of 1/6. The
fundamental reason for this divergence is that
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we are modelling a continuous exponential decay
using a discrete geometric progression.

We have attempted to explain how the number
of sides of the dice affects the degree of divergence
and found that it decreases when the number of
sides increases. Judging from some worksheets
available on the internet, it would seem that
a number of people have already come to this
conclusion, probably empirically. In practice,
though, the commonly available kits (such as
those provided by Philip Harris Ltd) work out at
a few pence per die, whereas the more unusual
polyhedral dice are many times more expensive.

Nevertheless there is no doubt that this simple
experiment provides a very useful analogue for
radioactive decay—it highlights the random nature
of the process, it produces a graph showing the
decay rate decreasing with ‘number of throws’ (or
‘time’), and it enables large numbers of pupils to
generate their own data simply and safely. We are
not suggesting for a moment that teachers should
discontinue this experiment, merely to be aware
that when the majority of your class find a half-
life of around 3.8 when you were expecting 4.2 it
is not necessarily due to bad luck or a small sample
size, but is an inherent limitation of the model.
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