draft  Heisenberg’s Laser draft
Teacher Notes
Description

The Heisenberg Uncertainty Principle is a long-established key component of quantum physics. It states that, for quantum particles, the uncertainties in measurement of complementary variables are inversely proportial to each other with a proportionality constant on the scale of Planck’s constant. The most famous example of such complementary variables is momentum p vs. position x: the more precisely we measure one, the greater the uncertainty in the other, expressed mathematically as Dp Dx ≥ h/2p. , where p is momentum, x is position (distance from some point) and h is Planck’s Constant, approximately 6.63 x 10-34 Js or 4.14 x 10-14 eVs.
This activity is designed to enable students to empirically demonstrate the Uncertainty Principle by measuring the uncertainties in position and momentum of photons in a laser beam. To do this, we direct the laser through a small opening to enable diffraction. The size of the opening reveals Dx while the distance between maxima gives us Dp. Changing the size of the opening changes the distance between maxima. 
Standards Addressed

Next Generation Science Standards 


Science and Engineering Practices



4. Analyzing and interpreting data



5. Using mathematics and analytical thinking



8. Obtaining, evaluating and communicating information
Common Core Literacy Standards


Reading



9-12.4 Determine the meaning of symbols, key terms . . . 



9-12.7 Translate quantitative or technical information . . . 

Common Core Mathematics Standards


MP1. Make sense of problems and persevere in solving them.


MP2. Reason abstractly and quantitatively.


MP4. Model with mathematics.

Enduring Understanding

Scientists can use data to develop models based on patterns in the data. 

Learning Objectives

Students be able to:

1. Demonstrate diffraction of light from a laser beam passing through a thin slit.
2. Show how changing the width of the slit changes the diffraction pattern.
3. Apply the deBroglie wavelength equation and experimental results to empirically demonstrate the relationship between uncertainty in position and uncertainty in momentum.
Prior Knowledge

Students must be able to:

· Plot and interpret a graph from data.

· Read and adjust a vernier caliper.
· Apply the rules for diffraction.
Background Material
In the QuarkNet Data Activity What Heisenberg Knew, we use data from a beam of large molecules diffracting through a thin slit. These large molecules are still small enough to be quantum objects and so they create a wave-like diffraction pattern as they pass through the slit. The width of the slit provides an uncertainty in position of the molecules transverse to the beam direction. Since there is a width to each maximum or minimum there must be an uncertainty in the DeBroglie  wavelength, implying an uncertainty in momentum, Students are give the data from this experiment and can confirm empirically that Dp = (constant)/Dx or DpDx = constant, the mathematical expression of the Uncertainty Principle.
QuarkNet fellow Dr. Michael Wadness had an insight: what is physical for large molecules is physical for much smaller particles, like electrons. Electron diffraction experiments are well-know but beyond the capacities of high school physics laboratories to perform. Taking the logic a step further, however, perhaps the experiment can be performed with photons instead. This is not only what we propose but we also tested at the University of Notre Dame with the assistance of undergraduate laboratory manager Dr. Thomas Loughran.
Resources
What Heisenberg Knew from QuarkNet Data Activities portfolio
Materials
Data Images or
· Two Vernier Calipers that can be adjusted and read to mm precision
· Red laser, low intensity, with a known operating wavelength.

· Meter stick or similar length-measuring device

· White or light-colored screen (e.g. poster board)

· Stands and clamps to fix all items into place

· Room with sufficient space which can be darkened.

.
Implementation
Figure 1 shows the experiment as performed at Notre Dame. There are approaches to this activity. The first is to take the data from the Data Images pages, calculate values of Dp and Dx, and then plot the results. The second is similar but for the class to replicate the experiment and generate their own data. In the latter case, special care must be taken to train students in eye safety when using lasers.
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Figure 1. Experiment at Notre Dame.

In either case, these are the steps to perform the experiment and analyze results:

1. Using stands and clamps place the laser in a horizontal position to send the beam some distance on the order of meters. 
2. Set up the caliper of that the plane of its slit opening is at right angles to the beam.

3. Place the white or light-colored screen multiple meters away from the caliper with its plane vertical. Fix it in position.

4. Adjust the caliper to 0.1 mm slit opening.

5. Turn on the laser and adjust its position relative to the slit until you get a diffraction pattern on the screen.

6. Using a different caliper, measure the width of the central maximum and record it.

7. Repeat steps 4-6 multiple times, different slit opening widths up to 1 mm. If using the Data Images, students can read the caliper in the pictures.

After these steps are complete, students must determine Dp from the width of the central maximum and Dx from the size of the slit opening for each data point. It is preferable that Dp is calculated directly by students.
How to find Dp and Dx

It is not hard to get Dx: it is just the width of the aperture for the laser beam made by the vernier caliper at the source. Students can read it and record it. Finding Dp is a little more involved. To do this, we first treat the photon as if it is not a photon but a classical particle with velocity and mass. Then if it has this velocity in the beam direction, the width of the beam coming out of the slit would be due to variations in that velocity. As seen in the diagram below, we can call the speed of our particle v and the uncertainty (variation) in speed Dv perpendicular to v.
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If the particle travels distance D to the screen in some time t, then 
D = vt. 
If the width of the central maximum in the diffraction pattern is understood to be s, then 
s = 2(Dv)t. 
Since, classically, p = mv and Dp = mDv, we can rewrite these two equations as
D = (p/m)t

And

s =  2(Dp/m)t = 2(Dp)t/m.

Let’s divide the second equation by the first:

s/D = 2Dp/p

since the m’s and t’s all cancel. At this point we have an equation, since it only uses momentum p and no strictly classical quantities, works for photons, relativistic and quantum mechanical as they are.
Now we need to get a little more quantum mechanical: the deBroglie wavelength of the particle is l = h/p, where h is Planck’s constant, 6.63 x 10-34 kg̥-m2/s. We can rewrite this as p = h/l and substitute into our developing equation:
s/D = 2 lDp/h.

Rearranging for Dp, we get

Dp = hs/2lD.
Students can use this equation to find Dp for each measurement.

Sample calculation

Let’s make a sample calculation for an aperature 0.2 mm and width of central maximum s = 27 mm. The wavelength of the laser light is 650 nm and the distance from the aperature to the screen is 7.61 m. See below.
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Then we can calculate Dp in this instance to be
Dp = hs/2lD = [(6.63 x 10-34 kg-m2/s)(2.7 x 10-2 m)]/[2(650x10-9 m)(7.61 m) = 1.81 x 10-30 kg-m/s.
We can check this by seeing if it is approximately consistent with the Uncertainty relation 

DpDx = h/2p.

Let’s use it to calculate an approximate value of Planck’s Constant:

h = 2pDpDx = 2(3.14)(1.81 x 10-30 kg-m/s)(2 x 10-4 m) = 2.27 x 10-33 kg-m/s.
This is “in the ballpark” of h = 6.63 x 10-34 kg-m2/s, which is about all we expect.

Expected results using supplied data
The results that can be read from the supplied data are summarized in this table:
	Event
	App (mm)
	Width s (mm)
	Width s (m)
	delta x (m)
	delta p (x 10^-30 kg-m/s)
	
	1/(delta x) (m^-1)

	1
	0.2
	27
	0.027
	0.0002
	1.81
	
	5000

	2
	0.3
	35
	0.035
	0.0003
	2.35
	
	3333

	3
	0.4
	27
	0.027
	0.0004
	1.81
	
	2500

	4
	0.5
	24
	0.024
	0.0005
	1.61
	
	2000

	5
	0.6
	20
	0.02
	0.0006
	1.34
	
	1667

	6
	0.7
	16
	0.016
	0.0007
	1.07
	
	1429

	7
	0.8
	15
	0.015
	0.0008
	1.01
	
	1250

	8
	0.9
	14
	0.014
	0.0009
	0.94
	
	1111

	9
	1
	13
	0.013
	0.001
	0.87
	
	1000


Plotting Dp as a function of Dx, we get:
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This is close to the expected curve – if DpDx ~ h/2p, then as Dx increases, Dp decreases – but it is not perfect. We can see why in the linearized plot:
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The last point seems to be an outlier. The blue trendline was generated by the software (Google sheets) and gives a slope of 3.01 x 10-34 kg-m2/s once we take the scaling of the vertical axis into account. This is, as stated above in our sample calculation, “in the ballpark” The red trendline is more like a hand-drawn line that ignores the outlier. This slope is in the same ballpark.
You may run into this in doing the experiment with the students. If you use the pre-packaged data, then you do have this to deal with. How to  analyze the plot becomes an item of discussion.
Stopped here…
Assessment
There are two main parts to the assessment:
1. Student groups turn in their calculations and data tables for inspection. 

2. Each student should write a 1-2 paragraph description of how photons scatter off of electrons and, as a result, have a change in wavelength. They should relate this to momentum and energy considerations. Encourage diagrams.
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